用户名: 密码: 验证码:
基于HYDRUS-2D软件的土壤水力特征参数反演及间接地下滴灌的土壤水分运动模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Identification of soil hydraulic parameters based on HYDRUS-2D software and simulation of soil water movement under indirect subsurface drip irrigation
  • 作者:俞明涛 ; 张科锋
  • 英文作者:YU Mingtao;ZHANG Kefeng;College of Civil Engineering and Architecture, Zhejiang University;Ningbo Institute of Technology, Zhejiang University;
  • 关键词:间接地下滴灌 ; 土壤水分分布 ; 水力特征参数反演 ; 农业用水管理
  • 英文关键词:indirect subsurface drip irrigation;;soil water content distribution;;identification of hydraulic parameters;;agricultural water management
  • 中文刊名:ZJNB
  • 英文刊名:Acta Agriculturae Zhejiangensis
  • 机构:浙江大学建筑工程学院;浙江大学宁波理工学院;
  • 出版日期:2019-03-25
  • 出版单位:浙江农业学报
  • 年:2019
  • 期:v.31;No.196
  • 基金:国家自然科学基金(51379187);; 浙江省教育厅一般科研项目(Y201737690);; 宁波市农业富民计划(2016C10057)
  • 语种:中文;
  • 页:ZJNB201903016
  • 页数:11
  • CN:03
  • ISSN:33-1151/S
  • 分类号:119-129
摘要
间接地下滴灌是一种能有效减少地表蒸发、提高水分运输效率的新型滴灌方式。虽然土壤水分运动模拟已成为优化滴灌的重要工具,但由于土壤水力特征参数难以确定,模拟结果往往不够精确。为此,基于室内间接地下滴灌实验数据,利用HYDRUS-2D软件对土壤水力特征参数进行反演尝试,并探究边界均匀出水时,不同规格(直径、高度)的间接地下滴灌导水装置下形成的土壤水分分布差异。结果表明,HYDRUS-2D软件能有效地反演土壤水力特征参数,用反演参数模拟的土壤含水量和湿润距离与实测值吻合良好,基于3个反演参数和4个反演参数的模拟效果差异不大,计算模型的纳什效率系数分别为0.716和0.714。灌溉时不同直径、相同透水边界高度的装置对侧边和底部的含水量分布影响不大,而相同直径、不同透水边界高度的装置对侧边和底部的含水量分布影响较大。研究结果可为间接地下灌溉时导水装置规格的选取与农业水分精准管理提供科学依据。
        Indirect subsurface drip irrigation is a new drip irrigation method, which can effectively reduce surface evaporation and improve water transport efficiency in soil. Although numerical modeling of soil water movement has become an important tool for optimizing irrigation, the predictions are often not sufficiently accurate due to the uncertainty of soil hydraulic property values. In this study, based on the laboratory data from the experiments on indirect subsurface drip irrigation, it was attempted to infer the soil hydraulic parameters by using HYDRUS-2D software. Also, the difference in soil water content distribution was numerically explored for drip irrigation devices with different specifications(diameter and height). The results showed that the HYDRUS-2D software could effectively infer the soil hydraulic parameters. The simulated soil water content and wetting distance using the inferred soil hydraulic parameters agreed well with the measured values. The differences in simulated results based on the 3 and 4 inferred parameters were not significantly different. The calculated Nash-Sutcliff model performance coefficient was 0.716 and 0.714, respectively. The irrigation device with the same permeable boundary height but different diameter had little effect on soil water content distribution around the water guide device, while the device with the same diameter but different permeable boundary height had a bigger effect on water content distribution. The results obtained in this study could provide a scientific basis for the selection of water guide device specifications and the precision management of agricultural water for indirect subsurface irrigation.
引文
[1] 孙三民,安巧霞,杨培岭,等.间接地下滴灌灌溉深度对枣树根系和水分的影响[J].农业机械学报,2016,47(8):81-90. SUN S M,AN Q X,YANG P L,et al. Effect of irrigation depth on root distribution and water use efficiency of jujube under indirect subsurface drip irrigation[J].Transactions of the Chinese Society of Agricultural Machinery,2016,47(8):81-90. (in Chinese with English abstract)
    [2] KANDELOUS M M, ?IM?NEK J. Comparison of numerical, analytical, and empirical models to estimate wetting patterns for surface and subsurface drip irrigation.[J]. Irrigation Science, 2010, 28(5):435-444.
    [3] SUBBAIAH R. A review of models for predicting soil water dynamics during trickle irrigation[J]. Irrigation Science, 2013, 31(3):225-258.
    [4] ?IM?NEK J, VENUCHTEN M TH, ?EJNA M. The HYDRUS software package for simulating two-and three-dimensional movement of water, heat and multiple solutes in variably-saturated media(version 2.0)[M]. California: Colorado School of Mines Publishers, 2011.
    [5] 安巧霞,孙三民,徐镕,等.间接地下滴灌水盐运移影响因素研究[J].浙江农业学报,2016,28(5):843- 846.AN Q X, SUN S M, XU R,et al. Study of influence factors on water and salt movement under indirect subsurface drip irrigation[J]. Acta Agriculturae Zhejiangensis, 2016, 28(5): 843-846. (in Chinese with English abstract)
    [6] 余根坚,黄介生,高占义,等.基于HYDRUS模型不同灌水模式下土壤水盐运移模拟[J].水利学报,2013,44(7):826-834. YU G J, HUANG J S, GAO Z Y, et al. Study on water and salt transportation of different irrigation modes by the simulation of HYDRUS model[J]. Journal of Hydraulic Engineering, 2013, 44(7): 826-834. (in Chinese with English abstract)
    [7] 范严伟,赵彤,白贵林,等.水平微润灌湿润体HYDRUS-2D 模拟及其影响因素分析[J].农业工程学报,2018,34(4):115-124.FAN Y W, ZHAO T, BAI G L, et al. HYDRUS-2D simulation of soil wetting pattern with horizontal moistube-irrigation and analysis of its influence factors[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(4): 115-124. (in Chinese with English abstract)
    [8] SKAGGS T H, TROUT T J, ?IM?NEK J, et al. Comparison of HYDRUS-2D simulations of drip irrigation with experimental observations[J]. Journal of Irrigation and Drainage Engineering, 2004, 130(4): 304-310.
    [9] 莫彦,李光永,蔡明坤,等. 基于HYDRUS-2D 模型的玉米高出苗率地下滴灌开沟播种参数优选[J].农业工程学报,2017,33(17): 105-112.MO Y, LI G Y, CAI M K, et al. Selection of suitable technical parameters for alternate row/bed planting with high maize emergence under subsurface drip irrigation based on HYDRUS-2D model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(17): 105-112. (in Chinese with English abstract)
    [10] PROVENZANO G. Using HYDRUS-2D simulation model to evaluate wetted soil volume in subsurface drip irrigation systems[J]. Journal of Irrigation & Drainage Engineering, 2007, 133(4): 342-349.
    [11] 安乐生, 刘春, 廖凯华. 一种改进的土壤水分特征曲线模型及其验证[J]. 浙江农业学报, 2015, 27(5): 837-840. AN L S, LIU C, LIAO K H. An improved model for prediction of soil water retention properties and its validation[J]. Acta Agriculturae Zhejiangensis, 2015, 27(5): 837-840. (in Chinese with English abstract)
    [12] KLUTE A. Methods of soil analysis: part 1[M]. 2nd Ed. Madison, US: Agronomy Monograph, 1986: 635-662.
    [13] ZHANG K, BURNS I G, GREENWOOD D J, et al. Developing a reliable strategy to infer the effective soil hydraulic properties from field evaporation experiments for agro-hydrological models[J]. Agricultural Water Management, 2010, 97(3): 399-409.
    [14] W?HLING T, VRUGT J A, BARKLE G F. Comparison of three multiobjective optimization algorithms for inverse modeling of vadose zone hydraulic properties[J]. Soil Science Society of America Journal, 2008, 72(2): 305-319.
    [15] 饶元, 许文俊, 江朝晖, 等. 非饱和土壤水运动模型参数优选方法研究[J]. 浙江农业学报, 2016, 28(12): 2082-2089. RAO Y, XU W J, JIANG Z H, et al. Parametric optimization of unsaturated soil hydraulic movement model[J]. Acta Agriculturae Zhejiangensis, 2016, 28(12): 2082-2089. (in Chinese with English abstract)
    [16] NAKHAEI M, ?IM?NEK J. Parameter estimation of soil hydraulic and thermal property functions for unsaturated porous media using the HYDRUS-2D code[J]. Journal of Hydrology & Hydromechanics, 2014, 62(1): 7-15.
    [17] 张吉孝, 张新民, 刘久如,等. 用HYDRUS-2D和RETC数值模型反推土壤水力参数的特点分析[J]. 甘肃农业大学学报, 2013, 48(5): 161-166.ZHANG J X, ZHANG X M, LIU J R, et al. Characteristic analysis of soil hydraulic parameters in inversely process by using HYDRUS-2D and RETC numerical models[J]. Journal of Gansu Agricultural University, 2013, 48(5): 161-166. (in Chinese with English abstract)
    [18] 赵伟霞,张振华,蔡焕杰,等. 间接地下滴灌导水装置规格参数模型[J].水利学报,2009,40(3):355-363.ZHAO W X,ZHANG Z H,CAI H J,et al. Parameter model of water-conducting device specification under indirect subsurface drip irrigation[J]. Journal of Hydraulic Engineering,2009,40(3):355-363. (in Chinese with English abstract)
    [19] 冀荣华, 王婷婷, 祁力钧, 等. 基于HYDRUS-2D的负压灌溉土壤水分入渗数值模拟[J]. 农业机械学报, 2015, 46(4): 113-119.JI R H, WANG T T, QI L J, et al. Numerical simulation of soil moisture infiltration under negative pressure irrigation based on HYDRUS-2D[J]. Transactions of the Chinese Society of Agricultural Machinery, 2015, 46(4): 113-119. (in Chinese with English abstract)
    [20] VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
    [21] NASH J E, SUTCLIFFE J V. River flow forecasting through conceptual models part I: a discussion of principles[J]. Journal of Hydrology, 1970, 10(3): 282-290.
    [22] 徐镕. 南疆枣树间接地下滴灌下根区土壤水盐运移规律及生长发育试验研究[D]. 阿拉尔:塔里木大学,2014.XU R. Experimental study on root region soil water and salt transport and growth in southern Xinjiang jujube under indirectly subsurface drip irrigation[D]. Alar: Tarim University, 2014. (in Chinese with English abstract)
    [23] 安巧霞, 孙三民, 徐镕,等. 不同流量对间接地下滴灌湿润体特征的影响[J]. 人民黄河, 2016, 38(6):154-156. AN Q X, SUN S M, XU R, et al. Effects of different dripper discharge on wetting soil characteristics of indirect subsurface drip irrigation[J]. Yellow River, 2016, 38(6): 154-156. (in Chinese with English abstract)
    [24] BOONE A, WETZEL P J. Issues related to low resolution modeling of soil moisture: experience with the PLACE model[J]. Global & Planetary Change, 1996, 13(1/2/3/4):161-181.
    [25] LEE D H, ABRIOLA L M. Use of the Richards equation in land surface parameterizations[J]. Journal of Geophysical Research Atmospheres, 1999, 104(D22):27519-27526.
    [26] 杨文元,刘昭,张玉雪,等. 确定田块尺度土壤水力参数不同方法的比较研究[J]. 灌溉排水学报,2016,35(4):1-7. YANG W Y, LIU Z, ZHANG Y X, et al. Comparison of methods for estimating soil hydraulic parameters at field scale[J]. Journal of Irrigation and Drainage, 2016, 35(4):1-7. (in Chinese with English abstract)
    [27] MASHAYEKHI P, GHORBANIDASHTAKI S, MOSADDEGHI M R, et al. Different scenarios for inverse estimation of soil hydraulic parameters from double-ring infiltrometer data using HYDRUS-2D/3D[J]. International Agrophysics, 2016, 30(2): 203-210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700