用户名: 密码: 验证码:
具有分流和悬臂叶片尾导的轴流血泵设计分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of an axial blood pump of diffuser with splitter blades and cantilevered main blades
  • 作者:柳光茂 ; 席俭 ; 陈海波 ; 张岩 ; 侯剑锋 ; 周建业 ; 孙寒松 ; 胡盛寿
  • 英文作者:LIU Guangmao;XI Jian;CHEN Haibo;ZHANG Yan;HOU Jianfeng;ZHOU Jianye;SUN Hansong;HU Shengshou;State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College;Zhonghang Electronic Measuring Instruments Co., Ltd;
  • 关键词:轴流血泵 ; 数值模拟 ; 溶血指数 ; 悬臂叶片 ; 分流叶片
  • 英文关键词:axial blood pump;;numerical simulation;;hemolysis index;;cantilevered main blade;;splitter blade
  • 中文刊名:SWGC
  • 英文刊名:Journal of Biomedical Engineering
  • 机构:中国医学科学院北京协和医学院国家心血管病中心阜外医院心血管疾病国家重点实验室;中航电测仪器股份有限公司;
  • 出版日期:2019-05-15 16:09
  • 出版单位:生物医学工程学杂志
  • 年:2019
  • 期:v.36
  • 基金:国家重点研发计划(2016YFC1300900)
  • 语种:中文;
  • 页:SWGC201903005
  • 页数:7
  • CN:03
  • ISSN:51-1258/R
  • 分类号:37-43
摘要
根据中国终末期心衰患者对左心辅助泵辅助人体血液循环的要求,设计以3 L/min流量、100 mm Hg压升为设计点,流量范围为2~7 L/min的微型可植入轴流血泵。该血泵采用纺锤形的转子叶轮结构以及带分流叶片、悬臂叶片的尾导结构,以使血泵在较宽的压力流量范围内具有良好的溶血和抗血栓特性。本文用数值模拟及粒子成像测速(PIV)的方法分析血泵的水力学特性、流场及溶血特性。结果表明:血泵转速为7 000~11 000 r/min时,在2~7 L/min的流量范围内可提供60.0~151.3 mm Hg的压升;分流叶片抑制了尾导的尾缘吸力面处的流动分离;悬臂式叶片结构将转子叶片的叶尖间隙变为尾导叶片的叶根间隙,间隙的切线速度由6.2 m/s降至4.3~1.1 m/s;血泵的最大标量剪切应力值为897.3 Pa,平均剪切应力值为37.7 Pa;采用Heuser溶血模型得到的溶血指数为0.168%;PIV试验所得泵内尾导区域的流场速度分布与数值计算得到的流场特征吻合良好。本研究所设计的轴流血泵的尾导具有分流叶片和悬臂叶片,流道内血流无较大分离流动,降低了剪切力对血液的破坏,溶血性能良好,压力流量性能满足临床需要。
        An implantable axial blood pump was designed according to the circulation assist requirement of severe heart failure patients of China. The design point was chosen at 3 L/min flow rate with 100 mm Hg pressure rise when the blood pump can provide flow rates of 2-7 L/min. The blood pump with good hemolytic and anti-thrombogenic property at widely operating range was designed by developing a structure that including the spindly rotor impeller structure and the diffuser with splitter blades and cantilevered main blades. Numerical simulation and particle image velocimetry(PIV) experiment were conducted to analyze the hydraulic, flow fields and hemolytic performance of the blood pump. The results showed that the blood pump could provide flow rates of 2-7 L/min with pressure rise of 60.0-151.3 mm Hg when the blood pump rotating from 7 000 to 11 000 r/min. After adding the splitter blades, the separation flow at the suction surface of the diffuser has been reduced efficiently. The cantilever structure changed the blade gap from shroud to hub that reduced the tangential velocity from 6.2 m/s to 4.3-1.1 m/s in blade gap. Moreover, the maximum scalar shear stress of the blood pump was 897.3 Pa, and the averaged scalar shear stress was 37.7 Pa. The hemolysis index of the blood pump was 0.168% calculated with Heuser's hemolysis model. The PIV and simulated results showed the overall agreement of flow field distribution in diffuser region. The blood damage caused by higher shear stress would be reduced by adopting the spindle rotor impeller and diffuser with splitter blades and cantilevered main blades. The blood could flow smoothly through the axial blood pump with satisfactory hydraulics performance and without separation flow.
引文
1 Nose Y,Yoshikawa M,Murabayashi S,et al. Development of rotary blood pump technology:past,present, and future.Artif Organs.2000,24(6):412-420.
    2 Sheriff J,Girdhar G,Chiu W C,et al. Comparative efficacy of in vitro and in vivo metabolized aspirin in the DeBakey ventricularassist device.J Thromb Thrombolysis,2014,37(4):499-506.
    3 Tchantchaleishvili V,Hallinan W,Schwarz K Q,et al. Long-term total cardiac support in a Fontan-type circulation with HeartMate II left ventricular assist device.Interact Cardiovasc Thorac Surg,2016,22(5):692-694.
    4 Tanoue Y,Jinzai Y,Tominaga R.Jarvik 2000 axial-flow ventricular assist device placement to a systemic morphologic right ventricle in congenitally corrected transposition of the great arteries.J Artif Organs,2016,19(1):97-99.
    5 Noor M R, Ho C H, Parker K H, et al. Investigation of the characteristics of HeartWare HVAD and Thoratec HeartMateⅡunder steady and pulsatile flow conditions.Artif Organs,2016,40(6):549-560.
    6 Fraser K H, Zhang Tao, Taskin M E, et al. A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices:shear stress,exposure time and hemolysis index.J Biomech Eng,2012,134(8):081002.
    7 Untaroiu A,Wood H G,Allaire P E,et al. Computational design and experimental testing of a novel axial flow LVAD.ASAIO J,2005,51(6):702-710.
    8 Zhang Yan,Zhan Zhao,Gui Xingmin,et al.Design optimization of an axial blood pump with computational fluid dynamics.ASAIO J,2008,54(2):150-155.
    9杨晓琛.人工心脏心室辅助泵流动优化设计与实验研究.北京:北京航空航天大学,2011.
    10 Liu Guangmao,Jin Donghai,Jiang Xihang,et al.Numerical and in vitro experimental investigation of the hemolytic performance atthe off-design point of an axial ventricular assist pump.ASAIO J,2016,62(6):657-665.
    11 Wernicke J T, Meier D, Mizuguchi K, et al. A fluid dynamic analysis using flow visualization of the Baylor/NASA implantable axial flow blood pump for design improvement,Artif Organs1995,19(2):161-177.
    12 Burgreen G W,Antaki J F,Wu Z J, et al. Computational fluid dynamics as a development tool for rotary blood pumps.Artif Organs,2001,25(5):336-340.
    13 Doligalski C T, Jennings D L. Device-related thrombosis in continuous-flow left ventricular assist device support.J Pharm Pract,2016,29(1):58-66.
    14 Bludszuweit C. Model for a general mechanical blood damage prediction.Artif Organs,1995,19(7):583-589.
    15 Gu Lei, Smith W A. Evaluation of computational models for hemolysis estimation.ASAIO J,2005,51(3):202-207.
    16 Heuser G,Opitz R.A couette viscometer for short time shearing in blood.Biorheology,1980,17(1/2):17-24.
    17 Apel J, Paul R, Klaus S,et al. Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics.Artif Organs,2001,25(5):341-347.
    18柳光茂,周建业,胡盛寿,等.轴流式左心辅助泵的出口管道流场PIV实验研究.中国生物医学工程学报,2013,32(6):678-684.
    19 Paul R,Apel J,Klaus S,et al. Shear stress related blood damage in laminar couette flow.Artif Organs,2003,27(6):517-529.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700