用户名: 密码: 验证码:
水厂污泥吸附磷前后孔隙结构及表面积变化分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:THE CHANGES OF PORE STRUCTURE AND SPECIFIC SURFACE AREA IN WATER TREATMENT RESIDUAL BEFORE AND AFTER PHOSPHORUS ADSORPTION
  • 作者:仇付国 ; 李林彬 ; 付昆明 ; 许俊挺 ; 王娟丽
  • 英文作者:QIU Fuguo;LI Linbin;FU Kunming;XU Junting;WANG Juanli;Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education Beijing University of Civil Engineering and Architecture;
  • 关键词:水厂污泥 ; ; 吸附脱附曲线 ; BJH模型 ; BET模型 ; 孔径分布
  • 英文关键词:Water treatment residual;;Phosphorus;;Adsorption-desorption isotherm;;BJH model;;BET model;;Pore size distribution
  • 中文刊名:LJYX
  • 英文刊名:Ion Exchange and Adsorption
  • 机构:城市雨水系统与水环境教育部重点实验室北京建筑大学;
  • 出版日期:2019-02-20
  • 出版单位:离子交换与吸附
  • 年:2019
  • 期:v.35
  • 基金:国家自然科学基金资助项目(51278024);; 住房城乡建设部科学技术项目(K42016090);; 北京建筑大学科学研究基金(00331616055)
  • 语种:中文;
  • 页:LJYX201901007
  • 页数:11
  • CN:01
  • ISSN:12-1147/O6
  • 分类号:63-73
摘要
水厂污泥含有铝铁化合物而具有良好的吸磷潜力,同时其吸附能力与本身的孔隙结构及比表面积均直接相关。确定污泥吸磷前后孔隙结构变化,对研究给水厂污泥吸磷机理及性能评价具有重要的意义。本文采用低温氮气吸附法,对给水厂污泥吸附磷前后的孔隙结构和比表面积进行了分析,绘制吸附-脱附等温曲线和孔径分布图,计算累积孔内表面积和累积孔体积,定量分析污泥吸磷前后孔隙结构的变化。通过吸附-脱附曲线可判断给水厂污泥主体孔径为介孔,污泥基本孔隙类型为"狭缝型"孔隙。BJH模型得到的孔径分布表明,给水厂污泥中孔径为1.0~16nm的孔隙对表面积贡献最大,对其吸附磷发挥关键作用,污泥吸磷后孔内体积减少14.5%。BET方法分析表明,污泥样品吸附磷前后比表面积分别为62.46m2/g和32.35m2/g,吸磷后比表面积减少了48.2%。同时确立了根据吸附前后污泥孔体积的减少量计算污泥对磷的理论吸附量的方法。
        Water treatment residual(WTR) presents excellent phosphorus(P) adsorption potential because it contains aluminium and iron compound, its P adsorption capacity is also influence by its pore structure and specific surface area. It is necessary to figured out the pore structure change of WTR before and after phosphorus adsorption to understand the P adsorption mechanisms. The pore structure and specific surface area of the WTR with and without P were analyzed by low-temperature nitrogen adsorption method. The adsorption-desorption isotherm and pore size distribution were plotted and the inner surface area and cumulative pore volume were calculated. The adsorption-desorption curve indicated that the pore size of the WTR was mesopore and the basic pore type of WTR was slit type pores. The pore size distribution analysis with BJH model showed the pores with diameter of 1.0~16.0 nm exerted the greatest contribution to the specific surface area of WTR and played a key role in the P adsorption, the pore volume of WTR decreased by 14.5% after P adsorption. The BET specific surface area of the WTR with and without P was 62.46 m2/g and 32.35 m2/g, respectively. A method for calculating the theoretical P adsorption capacity on WTR was established based on the reduction of the pore volume of the WTR before and after P adsorption, the calculated and tested P adsorption capacities were very close.
引文
[1]Conley D J,Paerl H W,Howarth R W,et al.Ecology.Controlling eutrophication:Nitrogen and phosphorus.Science[J].2009,323(5917):1014-1015.
    [2]仇付国,王瑜.水厂铝污泥去除水中污染物研究进展.水处理技术[J].2014,40(6):1-8.
    [3]陈毅忠,王利平,杜尔登,等.自来水厂脱水铝污泥对水中磷的吸附去除研究.中国给水排水[J].2011,27(23):88-91.
    [4]Bal Krishna K C,Aryal A,Jansen T.Comparative study of ground water treatment plants sludges to remove phosphorous from wastewater.Journal of Environmental Management[J].2016,180:17-23.
    [5]Duranceau S J,Biscardi P G.Comparing adsorptive media use for the direct treatment of phosphorous-impaired surface water.Journal of Environmental Engineering[J].2015,141(8):1-5.
    [6]Maqbool N,Khan Z,Asghar A.Reuse of alum sludge for phosphorus removal from municipal waste water.Desalination&Water Treatment[J].2016,57(28):13246-13254.
    [7]Liu R,Zhao Y,Sibille C,et al.Evaluation of natural organic matter release from alum sludge reuse in wastewater treatment and its role in P adsorption.Chemical Engineering Journal[J].2016,302:120-127.
    [8]崔举庆,侯庆锋,陆现彩,等.吸附聚丙烯酸对纳米碳管表面特征影响的研究.化学学报[J].2004,62(15):1447-1450.
    [9]严继民,张启元.吸附与凝聚:固体的表面与孔[M].北京:科学出版社,1979.
    [10]Brunauer S,Deming L S,Deming W E,et al.On a theory of the van der Waals adsorption of gases.Journal of the American Chemical Society[J].1940,62(7):1723-1732.
    [11]Gregg S J,Sing K S W.Adsorption,surface area,and porosity[M].London:Academic Press,1982.
    [12]刘明进,李晨宇.页岩气煤层气典型气体吸附模型分析.复杂油气藏[J].2015,8(3):50-54.
    [13]杨峰,宁正福,张世栋,等.基于氮气吸附实验的页岩孔隙结构表征.天然气工业[J].2013,33(4):135-140.
    [14]杨金朝,夏嘉,王思波,等.过成熟页岩孔隙结构变化的石英管热模拟研究.地球化学[J].2016,45(4):407-418.
    [15]赵晓红,赵亚乾,王文科,等.人工湿地系统以铝污泥为基质的几个关键问题.中国给水排水[J].2015,31(11):131-136.
    [16]Sing K S W.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity(Provisional).Pure and Applied Chemistry[J].2014,54(11):2201-2218.
    [17]Groen J C,Peffer L A A,Pérez-Ram??Rez J.Pore size determination in modified micro-and mesoporous materials:Pitfalls and limitations in gas adsorption data analysis.Microporous&Mesoporous Materials[J].2003,60(1/2/3):1-17.
    [18]近藤精一,石川达雄,安部郁夫,等.吸附科学[M].北京:化学工业出版社,2006.
    [19]涂湘巍,黄胜,曹琴,等.煤焦孔隙结构的表征及分析方法的构建.华东理工大学学报(自然科学版)[J].2015,41(5):611-616.
    [20]Bell W L,Jiang Z,Dietz S D.Proceedings of the symposium on recent advances in the chemistry and physics of fullerenes and related materials.The Electrochemical Society[J].1994,24:92.
    [21]陈明洪.泥沙颗粒吸附磷的规律及微观形貌变化的研究[D].北京:清华大学,2008.
    [22]Brunauer S,Emmett P H,Teller E.Adsorption of gases in multimolecular layers.Journal of the American Chemical Society[J].1938,60(2):309-319.
    [23]金彦任,黄振兴.吸附与孔径分布[M].北京:国防工业出版社,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700