用户名: 密码: 验证码:
新疆喀什三角洲地下水SO_4~(2-)化学特征及来源
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Chemical Characteristics and Sources of Groundwater Sulfate in the Kashgar Delta,Xinjiang
  • 作者:魏兴 ; 周金龙 ; 乃尉华 ; 曾妍妍 ; 范薇 ; 李斌
  • 英文作者:WEI Xing;ZHOU Jin-long;NAI Wei-hua;ZENG Yan-yan;FAN Wei;LI Bin;College of Water Conservancy and Civil Engineering,Xinjiang Agricultural University;Xinjiang Hydrology and Water Resources Engineering Research Center;NO.2 Hydrogeological and Engineering Geological Team of Xinjiang Bureau of Geology and Mineral Resources Exploration and Development;
  • 关键词:新疆喀什三角洲 ; 地下水高SO_4~(2-) ; 地下水演化 ; 氢氧同位素 ; 硫同位素
  • 英文关键词:Kashgar Delta Xinjiang;;high sulfate groundwater;;groundwater evolution;;hydrogen and oxygen isotopes;;sulfur isotope
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:新疆农业大学水利与土木工程学院;新疆水文水资源工程技术研究中心;新疆维吾尔自治区地质矿产勘查开发局第二水文工程地质大队;
  • 出版日期:2019-03-26 15:25
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(41662016);; 新疆自治区“十三五”重点学科建设高峰学科-水利工程学科基金项目(xjslgcgfxk20161103)
  • 语种:中文;
  • 页:HJKZ201908018
  • 页数:9
  • CN:08
  • ISSN:11-1895/X
  • 分类号:156-164
摘要
"水质型"缺水问题是新疆喀什地区水资源紧缺的主要原因之一.位于喀什地区西部的喀什三角洲面积13 329 km~2,73. 2%面积的潜水和53. 2%面积的承压水SO_4~(2-)浓度超过地下水质量Ⅲ类标准,同时伴随有高TDS、高硬度等特征.运用δD、δ~(18)O-H_2O和δ~(34)S-SO_4~(2-)同位素等手段分析地下水SO_4~(2-)化学特征及来源.结果表明:①区内剥蚀山区钙质粉砂岩、钙质细砂岩和石膏等盐类矿物的溶解控制了流域水化学组成,形成了水化学类型以SO_4型为主的地表水和地下水.地下水化学类型演变方向为HCO_3·SO_4→SO_4→SO_4·Cl,山麓斜坡冲洪积砾质平原为溶滤-径流带,河流冲积平原为径流-累积带,上游至下游地下水化学成分趋向盐化;②区内地下水初始补给源主要为大气降水,且受一定蒸发作用影响.不同水文地质单元地下水δD和δ~(18)O分布特征明显,上游至下游,同位素值由低到富集,受蒸发作用由弱到强;冲积平原承压水同位素分布较离散,受到上覆潜水混合作用影响;③南部、北部山麓斜坡冲洪积砾质平原潜水SO_4~(2-)来源分别为海陆交互相和陆相蒸发岩的溶滤;河流冲积平原潜水SO_4~(2-)除了陆相蒸发岩溶滤来源外,还存在化肥淋滤的污染;承压水受蒸发岩溶滤外,还受到潜水的混合作用和细菌还原硫酸盐作用影响.
        Poor water quality is one of the main reasons for a shortage of water resources in the Kashi Prefecture of Xinjiang. The area of the Kashgar Delta is located in the western Kashi Prefecture and covers an area of 13329 km~2. Sulfate concentrations exceed the groundwater quality class III standard in 73. 2% of the unconfined groundwater area and 53. 2% of the confined groundwater area. In addition,the TDS content and the hardness of the water are high. The chemical characteristics and sources of groundwater sulfate were analyzed using the isotope method of δD,δ~(18)O-H_ O,and δ~(34)S-SO_4~(2-). The results showed that: ① The dissolution of salt minerals such as calcareous siltstone,calcareous sandstone,and gypsum in denuded mountainous areas controlled the hydrochemical compositions in the basin,and formed surface water and groundwater dominated by SO_4. The evolution trend of groundwater chemical types was HCO_3·SO_4 →SO_4 →SO_4·Cl. Alluvial-proluvial gravel plains on the piedmont slopes were the main dissolution-runoff zones and the fluvial plain was main runoff accumulation zone. The chemical composition of the groundwater tended towards salinization,from upstream to downstream; ② The groundwater was mainly derived from atmospheric precipitation,and was affected by evaporation. The distribution of δD and δ~(18)O in the groundwaters of different hydrogeological units was clear; from upstream to downstream,isotope values varied from low to increasingly higher,and evaporation varied from weak to strong,respectively. The distribution of isotopes in the confined groundwater in the river alluvium plain was relatively discrete,which was affected by the mixing effect of unconfined groundwater;③ The sources of sulfate in the unconfined groundwater in the southern and northern alluvial-proluvial gravel plains on the piedmont slopes were the dissolution of marine-terrestrial and terrestrial deposit evaporates,respectively. The sources of sulfate in the unconfined groundwater in the river alluvium plain were the dissolution of terrestrial deposit evaporates and pollution from fertilizer leaching. The confined groundwater was affected by the dissolution of evaporates and the mixing effect of the unconfined groundwater and bacterial sulfate reduction.
引文
[1]曾妍妍,周殷竹,周金龙,等.新疆喀什地区西部地下水质量现状评价[J].新疆农业大学学报,2016,39(2):167-172.Zeng Y Y,Zhou Y Z,Zhou J L,et al.Assessment of groundwater quality status in western Kashgar,Xinjiang[J].Journal of Xinjaing Agricultural University,2016,39(2):167-172.
    [2]陈小兵,周宏飞,张学仁,等.新疆喀什噶尔冲积平原区地下水水化学特征[J].干旱区地理,2004,27(1):75-79.Chen X B,Zhou H F,Zhang X R,et al.Chemical characteristics of groundwater in Kashgaer Alluvial plain,Xinjiang[J].Arid Land Geography,2004,27(1):75-79.
    [3]Jakóbczyk-Karpierz S,Sitek S,Jakobsen R,et al.Geochemical and isotopic study to determine sources and processes affecting nitrate and sulphate in groundwater influenced by intensive human activity-carbonate aquifer Gliwice(southern Poland)[J].Applied Geochemistry,2017,76:168-181.
    [4]李瑞,肖琼,刘文,等.运用硫同位素、氮氧同位素示踪里湖地下河硫酸盐、硝酸盐来源[J].环境科学,2015,36(8):2877-2886.Li R,Xiao Q,Liu W,et al.Usingδ34S-SO2-4andδ15N-NO-3,δ18O-NO-3to trace the sources of sulfur and nitrate in Lihu Lake undergound water,Guangxi,China[J].Environmental Science,2015,36(8):2877-2886.
    [5]Huang Q B,Qin X Q,Yang Q Y,et al.Identification of dissolved sulfate sources and the role of sulfuric acid in carbonate weathering usingδ13CDICandδ34S in karst area,northern China[J].Environmental Earth Sciences,2016,75(1):51.
    [6]Hao S,Li F D,Li Y H,et al.Stable isotope evidence for identifying the recharge mechanisms of precipitation,surface water,and groundwater in the Ebinur Lake basin[J].Science of the Total Environment,2019,657:1041-1050.
    [7]Zhao M,Hu Y D,Zeng C,et al.Effects of land cover on variations in stable hydrogen and oxygen isotopes in karst groundwater:a comparative study of three karst catchments in Guizhou Province,Southwest China[J].Journal of Hydrology,2018,565:374-385.
    [8]Yang Q C,Mu H K,Wang H,et al.Quantitative evaluation of groundwater recharge and evaporation intensity with stable oxygen and hydrogen isotopes in a semi-arid region,Northwest China[J].Hydrological Processes,2018,32(9):1130-1136.
    [9]孔晓乐,王仕琴,丁飞,等.基于水化学和稳定同位素的白洋淀流域地表水和地下水硝酸盐来源[J].环境科学,2018,39(6):2624-2631.Kong X L,Wang S Q,Ding F,et al.Source of nitrate in surface water and shallow groundwater around Baiyangdian Lake area based on hydrochemical and stable isotopes[J].Environmental Science,2018,39(6):2624-2631.
    [10]张雅,苏春利,马燕华,等.水化学和环境同位素对济南东源饮用水源地地下水演化过程的指示[J].环境科学,2019,40(6):2667-2674.Zhang Y,Su C L,Ma Y H,et al.Indication of groundwater evolution process based on water hydrochemistry and environmental isotopes:A case study of Dongyuan drinking water source area in Ji'nan City[J].Environmental Science,2019,40(6):2667-2674.
    [11]González-Ramón A,López-Chicano M,Gázquez F,et al.Isotopic and hydrochemistry spatial variation of sulfate for groundwater characterization in karstic aquifers[J].Hydrological Processes,2017,31(18):3242-3254.
    [12]Seibert S L,Bottcher M E,Florian S,et al.Iron sulfide formation in young and rapidly-deposited permeable sands at the land-sea transition zone[J].Science of the Total Environment,2019,649:264-283.
    [13]Han D M,Song X F,Currell M J.Identification of anthropogenic and natural inputs of sulfate into a karstic coastal groundwater system in northeast China:evidence from major ions,δ13CDICand[J].Hydrology and Earth System Sciences Discussions,2016,12(11):11331-11370.
    [14]Cao X X,Wu P,Zhou S Q,et al.Tracing the origin and geochemical processes of dissolved sulphate in a karst-dominated wetland catchment using stable isotope indicators[J].Journal of Hydrology,2018,562:210-222.
    [15]任坤,潘晓东,兰干江,等.黔中茶店桥地下河流域不同水体硫酸盐浓度特征及来源识别[J].地质学报,2016,90(8):1922-1932.Ren K,Pan X D,Lan G J,et al.Sulfate concentrations and source identification in different water bodies of the Chadianqiao underground river basin in central Guizhou[J].Acta Geologica Sinica,2016,90(8):1922-1932.
    [16]Li X D,Liu C Q,Liu X L,et al.Identification of dissolved sulfate sources and the role of sulfuric acid in carbonate weathering using dual-isotopic data from the Jialing River,Southwest China[J].Journal of Asian Earth Sciences,2011,42(3):370-380.
    [17]马燕华,苏春利,刘伟江,等.水化学和环境同位素在示踪枣庄市南部地下水硫酸盐污染源中的应用[J].环境科学,2016,37(12):4690-4699.Ma Y H,Su C L,Liu W J,et al.Identification of sulfate sources in the groundwater system of Zaozhuang:evidences from isotopic and hydrochemical characteristics[J].Environmental Science,2016,37(12):4690-4699.
    [18]Pu J B,Yuan D X,Zhang C,et al.Hydrogeochemistry and possible sulfate sources in karst groundwater in Chongqing,China[J].Environmental Earth Sciences,2013,68(1):159-168.
    [19]肖琼,杨雷,蒲俊兵,等.重庆温塘峡背斜地表水-地下水-浅层地热水中硫同位素的环境指示意义研究[J].地质学报,2016,90(8):1945-1954.Xiao Q,Yang L,Pu J B,et al.The environmental significance of sulfur isotope in surface water-ground water-shallow thermal water in wentang gorge anticline,Chongqing,China[J].Acta Geologica Sinica,2016,90(8):1945-1954.
    [20]Zhang D,Li X D,Zhao Z Q,et al.Using dual isotopic data to track the sources and behaviors of dissolved sulfate in the western North China Plain[J].Applied Geochemistry,2015,52:43-56.
    [21]王文祥,王瑞久,李文鹏,等.塔里木盆地河水氢氧同位素与水化学特征分析[J].水文地质工程地质,2013,40(4):29-35.Wang W X,Wang R J,Li W P,et al.Analysis of stable isotopes and hydrochemistry of rivers in Tarim Basin[J].Hydrogeology&Engineering Geology,2013,40(4):29-35.
    [22]新疆维吾尔自治区国土资源厅.新疆维吾尔自治区矿产开发简明图集[M].乌鲁木齐:新疆维吾尔自治区国土资源厅,2014.81.
    [23]管隆垚.基于水质约束的喀什三角洲地下水开采方案研究[D].西安:长安大学,2018.Guan L Y.Study on groundwater exploitation plan in Kashgar Delta based on water quality constraint[D].Xi'an:Chang'an University,2018.
    [24]Rouabhia A,Baali F,Fehdi C,et al.Hydrogeochemistry of groundwaters in a semi-arid region.El Ma El Abiod aquifer,Eastern Algeria[J].Arabian Journal of Geoscience,2011,4(5-6):973-982.
    [25]付昌昌,张晟瑀,张文静,等.西吉县第三系承压水中硫酸盐的水文地球化学特征及其来源[J].干旱地区农业研究,2014,32(4):187-193.Fu C C,Zhang S Y,Zhang W J,et al.Hydrochemical characteristics and sources of sulfate in Xiji teritary confined groundwater[J].Agricultural Research in the Arid Areas,2014,32(4):187-193.
    [26]Tan H B,Ma H Z,Xiao Y K,et al.Characteristics of chlorine isotope distribution and analysis on sylvinite deposit formation based on ancient salt rock in the western Tarim Basin[J].Science in China Series D:Earth Sciences,2005,48(11):1913-1920.
    [27]马致远,钱会.环境同位素地下水文学[M].西安:陕西科学技术出版社,2004.82-85.
    [28]El Tabakh M,Utha-Aroon C,Schreiber B C.Sedimentology of the cretaceous Maha sarakham evaporites in the khorat plateau of northeastern thailand[J].Sedimentary Geology,1999,123(1-2):31-62.
    [29]魏兴,周金龙,曾妍妍,等.喀什地区西部地下水重金属空间分布特征及成因分析[J].环境化学,2017,36(8):1802-1811.Wei X,Zhou J L,Zeng Y Y,et al.Spatial distribution and orign of heavy metals in groundwater in the western Kashgar Prefecture[J].Environmental Chemistry,2017,36(8):1802-1811.
    [30]Hosono T,Delinom R,Nakano T,et al.Evolution model ofδ34Sandδ18O in dissolved sulfate in volcanic fan aquifers from recharge to coastal zone and through the Jakarta urban area,Indonesia[J].Science of the Total Environment,2011,409(13):2541-2554.
    [31]Miao Z H,Carroll K C,Brusseau M L.Characterization and quantification of groundwater sulfate sources at a mining site in an arid climate:The Monument Valley site in Arizona,USA[J].Journal of Hydrology,2013,504:207-215.
    [32]Li X D,Masuda H,Kusakabe M,et al.Degradation of groundwater quality due to anthropogenic sulfur and nitrogen contamination in the Sichuan basin,China[J].Geochemical Journal,2006,40(4):309-332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700