用户名: 密码: 验证码:
Optimal parameter choice of CR–RC~m digital filter in nuclear pulse processing
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimal parameter choice of CR–RC~m digital filter in nuclear pulse processing
  • 作者:Huai-Qiang ; Zhang ; Zhuo-Dai ; Li ; Bin ; Tang ; He-Xi ; Wu
  • 英文作者:Huai-Qiang Zhang;Zhuo-Dai Li;Bin Tang;He-Xi Wu;Engineering Research Center of Nuclear Technology Application (East China University of Technology), Ministry of Education;School of Nuclear Science and Engineering, East China University of Technology;
  • 英文关键词:CR–RC~m digital filter;;Nuclear pulse signal;;Gaussian shaping;;Energy resolution
  • 中文刊名:HKXJ
  • 英文刊名:核技术(英文版)
  • 机构:Engineering Research Center of Nuclear Technology Application (East China University of Technology), Ministry of Education;School of Nuclear Science and Engineering, East China University of Technology;
  • 出版日期:2019-07-15
  • 出版单位:Nuclear Science and Techniques
  • 年:2019
  • 期:v.30
  • 基金:supported by National Natural Science Foundation of China(Nos.11665001,41864007);; National Key R&D Project(No.2017YFF0106503);; China Scholarship Council(No.201708360170);; One Hundred People Sail in Jiangxi Province,Open-ended Foundation from the Chinese Engineering Research Center(No.HJSJYB2014-03)
  • 语种:英文;
  • 页:HKXJ201907012
  • 页数:5
  • CN:07
  • ISSN:31-1559/TL
  • 分类号:89-93
摘要
CR–RC~m filters are widely used in nuclear energy spectrum measurement systems. The choice of parameters of a CR–RC~m digital filter directly affects its performance in terms of energy resolution and pulse count rate in digital nuclear spectrometer systems. A numerical recursive model of a CR differential circuit and RC integration circuit is derived, which shows that the shaping result of CR–RC~m is determined by the adjustment parameter(k, it determines the shaping time of the shaper)and the integral number(m). Furthermore, the amplitude–frequency response of CR–RC~m is analyzed, which shows that it is a bandpass filter; the larger the shaping parameters(k and m), the narrower is the frequency band. CR–RC~m digital Gaussian shaping is performed on the actual sampled nuclear pulse signal under different shaping parameters. The energy spectrum of ~(137)Cs is measured based on the LaBr_3(Ce) detector under different parameters. The results show that the larger the shaping parameters(m and k), the closer the shaping result is to Gaussian shape, the wider is the shaped pulse, the higher is the energy resolution, and the lower is the pulse count rate. For the same batch of pulse signals, the energy resolution is increased from 3.8 to 3.5%, and the full energy peak area is reduced from 7815 to 6503. Thus, the optimal shaping parameters are m=3 and k=0:95. These research results can provide a design reference for the development of digital nuclear spectrometer measurement systems.
        CR–RC~m filters are widely used in nuclear energy spectrum measurement systems. The choice of parameters of a CR–RC~m digital filter directly affects its performance in terms of energy resolution and pulse count rate in digital nuclear spectrometer systems. A numerical recursive model of a CR differential circuit and RC integration circuit is derived, which shows that the shaping result of CR–RC~m is determined by the adjustment parameter(k, it determines the shaping time of the shaper)and the integral number(m). Furthermore, the amplitude–frequency response of CR–RC~m is analyzed, which shows that it is a bandpass filter; the larger the shaping parameters(k and m), the narrower is the frequency band. CR–RC~m digital Gaussian shaping is performed on the actual sampled nuclear pulse signal under different shaping parameters. The energy spectrum of ~(137)Cs is measured based on the LaBr_3(Ce) detector under different parameters. The results show that the larger the shaping parameters(m and k), the closer the shaping result is to Gaussian shape, the wider is the shaped pulse, the higher is the energy resolution, and the lower is the pulse count rate. For the same batch of pulse signals, the energy resolution is increased from 3.8 to 3.5%, and the full energy peak area is reduced from 7815 to 6503. Thus, the optimal shaping parameters are m=3 and k=0:95. These research results can provide a design reference for the development of digital nuclear spectrometer measurement systems.
引文
1.H.Q.Zhang,H.X.Wu,H.T.Ning,Research on the simulation and Gaussian shaping of nuclear signal based on multisim software.Nucl.Electron.Detect.Technol.35(8),845-848(2015).https://doi.org/10.3969/j.issn.0258-0934.2015.08.023.(in Chinese)
    2.B.Gan,T.C.Wei,W.Gao et al.,Design and performances of a low-noise and radiation-hardened readout ASIC for CdZnTe detectors.J.Semicond.37(6),177-183(2016).https://doi.org/10.1088/1674-4926/37/6/065007
    3.W.T.Evariste,S.Hong,Q.Yi et al.,Design and simulation of Gaussian shaping amplifier made only with CMOS FET for FEEof particle detector.Nucl.Sci.Tech.21(5),312-315(2010).https://doi.org/10.13538/j.1001-8042/nst.21.312-315
    4.V.T.Jordanov,G.F.Knoll,A.C.Huber et al.,Digital techniques for real-time pulse shaping in radiation measurements.Nucl.Instrum.Methods A 353,261-264(1994).https://doi.org/10.1016/0168-9002(94)91652-7
    5.A.Pullia,A.Geraci,G.Ripamonti,Quasi-optimum c and Xspectroscopy based on real-time digital techniques.Nucl.Instrum.Methods A 439,378-384(2000).https://doi.org/10.1016/S0168-9002(99)00897-9
    6.C.Imperiale,A.Imperiale,On nuclear spectrometry pulses digital shaping and processing.Measurement 30,49-73(2001).https://doi.org/10.1016/S0263-2241(00)00057-9
    7.N.Menaa,P.D.Agostino,B.Zakrzewski et al.,Evaluation of real-time digital pulse shapers with various HPGe and silicon radiation detectors.Nucl.Instrum.Methods A 652,512-515(2011).https://doi.org/10.1016/j.nima.2010.08.095
    8.V.T.Jordanov,Exponential signal synthesis in digital pulse processing.Nucl.Instrum.Methods A 670,18-24(2012).https://doi.org/10.1016/j.nima.2011.12.042
    9.A.Regadio,S.Sanchez-Prieto,M.Prieto et al.,Implementation of a real-time adaptive digital shaping for nuclear spectroscopy.Nucl.Instrum.Methods A 735,297-303(2014).https://doi.org/10.1016/j.nima.2013.09.063
    10.V.T.Jordanov,Unfolding-synthesis technique for digital pulse processing.Part 1:unfolding.Nuclear Instrum.Methods Phys.Res.A 805,63-71(2016).https://doi.org/10.1016/j.nima.2015.07.040
    11.G.Zeng,J.Yang,T.Hu et al.,Baseline restoration technique based on symmetrical zero-area trapezoidal pulse shaper.Nucl.Instrum.Methods A 858,57-61(2017).https://doi.org/10.1016/j.nima.2017.03.049
    12.Q.Ge,L.Q.Ge,H.W.Yuan et al.,A new digital Gaussian pulse shaping algorithm based on bilinear transformation.Nucl.Sci.Tech.26(1),37-41(2015).https://doi.org/10.13538/j.1001-8042/nst.26.010402
    13.H.Q.Huang,X.F.Yang,W.C.Ding et al.,Estimation method for parameters of overlapping nuclear pulse signal.Nucl.Sci.Tech.28(1),57-64(2017).https://doi.org/10.1007/s41365-016-0161-z
    14.X.Hong,Y.J.Ma,J.B.Zhou et al.,New methods to remove baseline drift in trapezoidal pulse shaping.Nucl.Sci.Tech.26(5),58-62(2015).https://doi.org/10.13538/j.1001-8042/nst.26.050402
    15.X.Hong,S.J.Ni,J.B.Zhou et al.,Simulation study on Gaussian pulse shaping algorithm.Nucl.Tech.39(11),49-54(2016).https://doi.org/10.11889/j.0253-3219.2016.hjs.39.110403.(in Chinese)
    16.J.B.Zhou,W.Zhou,J.R.Lei et al.,Study of time-domain digital pulse shaping algorithms for nuclear signals.Nucl.Sci.Tech.23(3),150-155(2012).https://doi.org/10.13538/j.1001-8042/nst.23.150-155
    17.Q.Ge,L.Q.Ge,X.L.Li,Research on digital shaping algorithm of the nuclear signal based on the same impulse response.Nucl.Electron.Detect.Technol.34(8),942-944(2014).https://doi.org/10.3969/j.issn.0258-0934.2014.08.006.(in Chinese)
    18.J.B.Zhou,X.Hong,R.B.Wang et al.,Study of recursive model for pole-zero cancellation circuit.Nucl.Sci.Tech.25(1),38-42(2014).https://doi.org/10.13538/j.1001-8042/nst.25.010403
    19.Y.Y.Liu,J.L.Zhang,R.Zhou et al.,Digitalization of CR-RCm filter.Nucl.Tech.40(6),44-48(2017).https://doi.org/10.11889/j.0253-3219.2017.hjs.40.060403.(in Chinese)
    20.Y.Y.Liu,J.L.Zhang,L.F.Liu et al.,Implementation of real-time digital CR-RCm shaping filter on FPGA for gamma-ray spectroscopy.Nucl.Instrum.Methods Phys.Res.Sect.A 906,1-9(2018).https://doi.org/10.1016/j.nima.2018.05.020
    21.M.Nakhostin,Recursive algorithms for real-time digital CR-(RC)n pulse shaping.IEEE Trans.Nucl.Sci.58(5),2378-2381(2011).https://doi.org/10.1109/TNS.2011.2164556
    22.H.Q.Zhang,W.H.Lu,B.Tang et al.,Methods of pulse pile-up identification in digital nuclear spectrometer system.J.East China Inst.Technol.Nat.Sci.35(3),281-284(2012).https://doi.org/10.3969/j.issn.1674-3504.2012.03.013.(in Chinese)
    23.H.Q.Zhang,L.Q.Ge,B.Tang et al.,Optimal choice of trapezoidal shaping parameters in digital nuclear spectrometer system.Nucl.Sci.Tech.24(6),109-114(2013).https://doi.org/10.13538/j.1001-8042/nst.2013.06.011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700