用户名: 密码: 验证码:
某硫酸渣中铅、锌的氯化焙烧动力学研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Lead and Zinc Removal from Pyrite Cinder by Chloride Roasting and Its Kinetics
  • 作者:姚维杰 ; 朱德庆 ; 潘建 ; 郭正启 ; 王浩
  • 英文作者:Yao Weijie;Zhu Deqing;Pan Jian;Guo Zhengqi;Wang Hao;School of Mineral Processing and Bioengineering,Central South University;
  • 关键词:硫酸渣 ; ; ; 氯化焙烧 ; 动力学
  • 英文关键词:Pyrite cinders;;Lead;;Zinc;;Chlorination roasting;;Kinetic
  • 中文刊名:JSKS
  • 英文刊名:Metal Mine
  • 机构:中南大学资源加工与生物工程学院;
  • 出版日期:2019-03-15
  • 出版单位:金属矿山
  • 年:2019
  • 期:No.513
  • 基金:国家自然科学基金项目(编号:51474161)
  • 语种:中文;
  • 页:JSKS201903031
  • 页数:6
  • CN:03
  • ISSN:34-1055/TD
  • 分类号:200-205
摘要
硫酸渣是一种大宗固体工业废弃物,铁含量较高,含量偏高的铅、锌往往是制约其作为铁资源利用的重要因素。氯化焙烧—磁化焙烧—磁选工艺则可成功脱除铅、锌,获得高铁低铅锌铁精矿。为揭示硫酸渣氯化焙烧过程中各主要相态的铅、锌发生氯化反应的限制环节,以及氯化反应的速率和氯化焙烧机理,以CaCl2为氯化剂,对某硫酸渣进行了氯化焙烧动力学研究。结果表明:①铁、铅、锌含量分别为49.90%、0.29%和1.23%,锌绝大部分为氧化态,铅主要为氧化态,其次是硫酸铅和其他形态铅,在CaCl2与硫酸渣的质量比为6%的情况下,延长氯化焙烧时间或提高焙烧温度,锌、铅的氯化挥发脱除率均上升,1 000℃时焙烧5 min,锌、铅的脱除率分别达86.99%和83.14%,为后续磁化焙烧—磁选制备高铁低杂铁精矿创造了良好的条件。②相比较而言,氯化焙烧脱锌比脱铅更容易。③900~1 050℃时锌氯化挥发的表观活化能为42.07×103J/mol,受化学反应控制;900~950℃时铅氯化挥发的表观活化能为43.88×103J/mol,受化学反应控制;1 000~1 050℃时铅氯化挥发的表观活化能为20.34×103J/mol,受扩散控制。④强化铅、锌的氯化挥发脱除,除了提高温度,还可通过增加固体氯化剂用量或提高硫酸渣固体颗粒的孔隙率和比表面积来实现。
        Pyrite cinder is a large amount of solid industrial waste. The iron content is high,and high lead and zinc content often restrict its utilization as an important factor of iron resources. The process of chlorination roasting-magnetization roasting-magnetic separation can successfully remove lead and zinc and obtain high grade iron and low lead zinc content iron concentrate. The kinetics of chlorination roasting of pyrite cinder with CaCl2 as chlorinating agent was studied in order to reveal the limiting link of chlorination reaction of lead and zinc in the main phases in the process of chlorination roasting of pyrite cinder,the rate of chlorination reaction and the mechanism of chlorination roasting. The results showed that: ① The contents of iron,lead and zinc were 49.90%,0.29% and 1.23% respectively. The majority of zinc was zinc oxide,and lead was mainly lead oxide,followed by lead sulfate and other forms of lead. When the mass ratio of CaCl2 to sulphuric acid residue was6%,the chlorination time or roasting temperature is prolonged,and the chlorination volatilization rate of zinc and lead increased. When roasted at 1 000 ℃ for 5 min,the zinc and lead removal rates were 86.99% and 83.14% respectively,which created good conditions for subsequent magnetization roasting and magnetic separation to prepare high grade iron and low impurity iron concentrate. ② Comparatively speaking,it is easier to remove zinc by chlorination roasting than lead.③The apparent activation energy of zinc chlorination volatilization is 42.07×103 J/mol at 900~1 050 ℃,which is controlled by chemical reaction;the apparent activation energy of lead chlorination volatilization is 43.88×103 J/mol at 900~950 ℃,which is controlled by chemical reaction;and the apparent activation energy of lead chlorination volatilization is 20.34×103 J/mol at 1 000~1 050 ℃,which is controlled by diffusion. ④To enhance the removal of chlorination volatilization of lead and zinc can be achieved not only by increasing the temperature,but also by increasing the amount of solid chlorinating agent or by increasing the porosity and specific surface area of solid particles of pyrite cinder.
引文
[1]吴大敏.我国硫铁矿产业存在的问题及对策[J].化工矿物与加工,2003(1):1-3.Wu Damin.Problems and countermeasures of pyrite industry in China[J].Chemical Minerals and Processing,2003(1):1-3.
    [2]Yang C X,Chen Y H.Distribution of natural and anthropogenic thallium in the soils in an industrial pyrite slag disposing area[J].Science of Total Environment,2005,341:159-172.
    [3]楼紫阳,宋立言,赵由才,等.中国化工废渣污染现状及资源化途径[J].化工进展,2006(9):988-994.Lou Ziyang,Song Liyan,Zhao Youcai,et al.Pollution and utilization of chemical industry waste slag in China[J].Progress in Chemical Engineering,2006(9):988-994.
    [4]Giunti M,Baroni D,Bacci E.Hazard assessment to workers of trace metal content in pyrite cinders[J].Bulletin of Environmental Contamination and Toxicoliogy,2004(2):352-357.
    [5]叶志平,何国伟.硫酸渣资源化及其以废治废技术研究[J].华南师范大学学报:自然科学版,2010(2):72-75.Ye Zhiping,He Guowei.Research on recycling technology and waste water treatment with sulfuric acid residue[J].Journal of South China Normal University:Natural Science Edition,2010(2):72-75.
    [6]陈永亨,吴颖娟.硫酸废渣中铁、锌、铜元素的迁移及其对环境的潜在影响[J].广州大学学报,2001(2):78-81.Chen Yongheng,Wu Yinjuan.Transfer of Fe,Zn and Cu in sulfuric acid residue and its potential impact on environment[J].Journal of Guangzhou Unversity,2001(2):78-81.
    [7]刘闯,蒋其胜,王志勇,等.论硫铁矿烧渣的再生与利用[J].安徽地质,2000(4):290-293.Liu Chuang,Jiang Qisheng,Wang Zhiyong,et al.On the regeneration and utilization of pyrite slag[J].Geology of Anhui,2000(4):290-293.
    [8]王雪松,张德海,任允芙.黄铁矿烧渣的特性及其利用[J].环境工程,1999(1):58-61.Wang Xuesong,Zhang Dehai,Ren Yunfu.Characteristics and utilization of pyrite cinder[J].Environmental Engineering,1999(1):58-61.
    [9]刘兴华,郭秀珍.硫酸渣的利用[J].矿产综合利用,1986(2):45-46.Liu Xinghua,Guo Xiuzhen.Utilization of pyrite cinder[J].Mineral Resources,1986(2):45-46.
    [10]储谦慎,王兴艳.铜陵硫酸渣综合利用[J].河北理工学院学报,2003(4):17-22.Chu Qianshen,Wang Xingyan.Comprehensive utilization of tongling pyrite cinder[J].Journal of Hebei Institute of Technology,2003(4):17-22.
    [11]张汉泉.硫酸渣资源化利用实践[J].中国矿业,2009(18):116-124.Zhang Hanquan.Practice of utilization of pyrite cinder[J].ChinaMining Magazine,2009(18):116-124.
    [12]魏祥松.硫铁矿烧渣特性及综合利用[J].化工地质,1994(3):205-209.Wei Xiangsong.Characteristics and comprehensive utilization of pyrite cinde[rJ].Geology of Chemical Minerals,1994(3):205-209.
    [13]朱德庆,陈栋,潘建.高压辊磨和润磨预处理强化硫酸渣球团对比研究[J].中南大学学报(自然科学版),2011(7):1825-1832.Zhu Deqing,Chen Dong,Pan Jian.Comparison of pretreating pyrite cinder by high pressure roller grinding with damp milling to improve pelletization[J].Journal of Central South University(Natural Science Edition),2011(7):1825-1832.
    [14]朱德庆,李建.硫酸渣复合球团还原焙烧法制备高品位磁铁精矿[J].中国有色金属学报,2007(4):649-656.Zhu Deqing,Li Jian.Preparation of high quality magnetite concentrate from pyrite cinder by composite pellet reduction-roasting and magnetic-separation[J].The Chinese Journal of Nonferrous Metals,2007(4):649-656.
    [15]Kihlstedt P G.Method for purifying and agglomerating pyrite cinders.US:849111[P].1974-11-09.
    [16]唐谟堂,张光德,阎立懿,等.氯化冶金[M].北京:冶金工业出版社,1978.Tang Motang,Zhang Guangde,Yan Liyi,et al.Chlorination Metallurgy[M].Beijing:Metallurgical Industry Processing,1978.
    [17]王浩.高铅锌硫酸渣分段氯化-磁化焙烧制备铁精矿研究[D].长沙:中南大学,2016.Wang Hao.Research on Preparations of Iron Concentrate by Chloridizing Magnetizing Roasting from Pyrite Cinders Containing High Lead and Zinc[D].Changsha:Centural South University,2016.
    [18]莫鼎成.冶金动力学[M].长沙:中南工业大学出版社,1987.Mo Dingcheng.Metallurgical Kinetics[M].Changsha:Central South University of Technology Press,1987.
    [19]Matsuura H,Yajima K,Tsukihashi F.Chlorination and evaporation behaviours of zinc and lead at chlorinating and oxidising atmosphere[J].Mineral Processing&Extractive Metallurgy,2013(4):235-239.
    [20]陈栋,朱德庆,费嘉.硫酸渣体系中氧化铅的氯化焙烧动力学研究[J].有色金属(冶炼部分),2015(4):5-7.Chen Dong,Zhu Deqing,Fei Jia.Chloridizing roasting kinetics of lead oxide from pyrite cinder[J].Nonferrous Metals(Extractive Metallurgy),2015(4):5-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700