用户名: 密码: 验证码:
预旋对周向槽处理机匣扩稳能力的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanism of affect on stall margin of circumferential grooves with variable pre-swirl angle
  • 作者:冯云阳 ; 袁巍
  • 英文作者:FENG Yunyang;YUAN Wei;National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics,School of Energy and Power Engineering,Beijing University of Aeronautics and Astronautics;Collaborative Innovation Center for Advanced Aero-Engine;
  • 关键词:预旋变化与处理机匣的匹配 ; 压气机失速 ; 压气机扩稳机理 ; 处理机匣 ; 周向槽设计
  • 英文关键词:matching between circumferential grooves and pre-swirl angle;;compressor stall;;stall margin improvement mechanism;;casing treatment;;design of circumferential grooves
  • 中文刊名:HKDI
  • 英文刊名:Journal of Aerospace Power
  • 机构:北京航空航天大学能源与动力工程学院航空发动机气动热力国家级重点实验室;先进航空发动机协同创新中心;
  • 出版日期:2019-08-06
  • 出版单位:航空动力学报
  • 年:2019
  • 期:v.34
  • 基金:国家自然基金(5163000227)
  • 语种:中文;
  • 页:HKDI201908022
  • 页数:14
  • CN:08
  • ISSN:11-2297/V
  • 分类号:196-209
摘要
以Rotor 67转子为研究对象,通过数值模拟的手段分析了周向槽(CG)提高转子失速裕度(SM)的机理,并在此基础上研究了周向槽处理机匣与转子前预旋的匹配问题。结果表明:在Rotor 67转子中,叶尖泄漏流与激波相互干渉产生的低速区是转子失速的重要原因,而周向槽内气流离开时形成的与泄漏涡(LV)方向相反的涡会抑制泄漏涡的周向发展,是周向槽的扩稳机理之一。通过分析周向槽处理机匣在不同预旋条件下扩稳效果的变化,显示在不同流量点、不同预旋条件下,随着转子叶尖负荷位置的变化,起主要扩稳作用的处理槽不同,并在此原则下,提出了一种周向槽设计的思路。
        Numerical simulations were performed for Rotor 67 to analyze the mechanism of the stall margin(SM)improvement of circumferential grooves(CG)casing treatment,and the matching between CG and pre-swirl angle.Results showed that stall in Rotor 67 was mainly attributable to the low velocity region arisen by the inference of tip leakage flow and shock wave.The mechanism of SM improvement was that the flow from the pressure side of adjacent blade caused a vortex counter-rotating to the leakage vortex(LV),which inhibited the development of LV.The most important groove(s)changed while the distribution of static pressure changed because of the varying mass flow or pre-swirl angle.A design method was presented depending on the research results.
引文
[1]WENNERSTROM A J.Highly loaded axial flow compressors:history and current developments[J].Journal of Turbomachinery,1990,112(4):567-578.
    [2]彭泽琰.航空燃气轮机原理[M].北京:国防工业出版社,2008:107-118.
    [3]EMMONS H W,PEARSON C E,GRANT H P.Compressor surge and stall propagation[J].Transaction of the ASME,1955,77(4):455-469.
    [4]MOORE F K.GREITZER E M.A theory of post-stall in axial flow compressors[R].Air Force Aero Propulsion Laboratory,AFAPL-TP-79-2083,1979.
    [5]INOUE M,KUROUMARU M,TANINO T,et al.Comparative studies on short and long length-scale stall cell propagatingin axial compressor rotor[J].Journal of Turbomachinery,2001,123(1):24-30.
    [6]CAMP T R,DAY I J.A study of spike and modal stall phenomena in a low-speed axial compressor[J].Journal of Turbomachinery,1998,120:393-401.
    [7]DAY I J.Stall,surge,and 75years of research[J].Journal of Turbomachinery,2016,138:011001.1-011001.16.
    [8]SMITH G,CUMPSTY N.Flow phenomena in compressor casing treatment[J].Journal of Engineering for Gas Turbines and Power,1984,106(3):532-541.
    [9]WATERMAN M.Axial flow compressor surge margin improvement:US005137419A[P].1992-08-11.
    [10]SEITZ P.Casing treatment for axial flow compressors[D].Cambridge,US:University of Cambridge,1999.
    [11]HOUGHTON T,DAY I J.Stability enhancement by casing grooves:the importance of stall inception mechanism and solidity[R].ASME Paper GT2010-22284,2010.
    [12]GREITZER E M.Surge and rotating stall in axial flow compressors:PartⅠtheoretical compression system model[J].Journal of Engineering for Power,1976(98):190-217.
    [13]WILKE I,KAU H P.A numerical investigation of the influence of casing treatments on the tip leakage flow in a hpc front stage[R].ASME Paper GT2002-30642,2002.
    [14]HATHAWAY M D.Self-recirculating casing treatment concept for enhanced compressor performance[R].ASMEPaper GT2002-30368,2002.
    [15]RABE D C,HAH C.Application of casing circumferential grooves for improved stall margin in a transonic axial compressor[R].ASME Paper GT-2002-30641,2002.
    [16]SHABBIR A.ADAMCZYK J J.Flow mechanism for stall margin improvement due to circumferential casing grooves on axial compressors[R].ASME Paper GT2004-53903,2004.
    [17]楚武利,张皓光,吴艳辉,等.槽式机匣槽宽变化对扩稳效果影响的试验与数值研究[J].航空学报,2015,29(4):866-872.CHU Wuli,ZHANG Haoguang,WU Yanhui,et al.Impact of Grooved Width of Grooved Casing on Stall Margin Improvement[J].Acta Aeronautica et Astronautica Sinica,2015,29(4):866-872.(in Chinese)
    [18]邓敬亮,楚武利,张皓光.轴流转子梯形周向槽处理机匣的扩稳分析[J].航空动力学报,2008,30(7):1721-1730.DENG Jingliang,CHU Wuli,ZHANG Haoguang.Stabilizing analysis of trapezoidal circumferential grooves on an axial rotor[J].Journal of Aerospace Power,2008,30(7):1721-1730.(in Chinese)
    [19]张皓光,安康,吴艳辉,等.周向槽轴向位置影响机匣处理扩稳能力的机理[J].推进技术,2016,37(12):2296-2302.ZHANG Haoguang,AN Kang,WU Yanhui,et al,Mechanism of affecting ability of casing treatment to improve stall margin with varying axial position of circumferential grooves[J].Journal of Propulsion Technology,2016,37(12):2296-2302.(in Chinese)
    [20]LIEBECK R H.Design of the blended-wing-body subsonic transport[J].AIAA Journal of Aircraft,2004,41(1):10-25.
    [21]ZHANG Haoguang,TAN Feng,AN Kang,et al,Numerical investigation of stall mechanism of an axial compressor at three different rotating speeds[R].ASME Paper GT2017-63777,2017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700