用户名: 密码: 验证码:
阳泉寺家庄井田8_1号煤底板黏土组分及压裂工艺
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research of clay minerals composition and fracturing technics of 8_1 coal seam floor rock in Sijiazhuang Mine Field of Yangquan Mining area
  • 作者:于振锋 ; 郝春生 ; 李军军 ; 王维 ; 杨昌永 ; 姚晋宝 ; 邵显华
  • 英文作者:Yu Zhenfeng;Hao Chunsheng;Li Junjun;Wang Wei;Yang Changyong;Yao Jinbao;Shao Xianhua;State Key Laboratory of Coal and CBM Co-Extraction;Yi'an Lanyan Company with Limited Liability of Coal and CBM Co-Extraction Technology;
  • 关键词:阳泉矿区 ; 寺家庄井田 ; 黏土组分 ; 压裂工艺
  • 英文关键词:Yangquan Mining area;;Sijiazhuang Mine Field;;clay minerals composition;;fracturing technology
  • 中文刊名:ZZMT
  • 英文刊名:China Energy and Environmental Protection
  • 机构:煤与煤层气共采国家重点实验室;易安蓝焰煤与煤层气共采技术有限责任公司;
  • 出版日期:2018-11-29 09:55
  • 出版单位:能源与环保
  • 年:2018
  • 期:v.40;No.275
  • 基金:山西省自然科学基金项目(2015012003);山西省自然科学基金项目(2016012012);; 山西省科技重大专项(MQ2015-02)
  • 语种:中文;
  • 页:ZZMT201811033
  • 页数:6
  • CN:11
  • ISSN:41-1443/TK
  • 分类号:156-160+166
摘要
阳泉矿区寺家庄井田8_1号煤段底板中含有大量的煤系气,但目前仍没有获得理想的煤层气增产效果。通过对目标层段岩石进行黏土组分分析,结果显示该段岩石黏土矿物主要为高岭石和伊利石,且含量相近。针对高岭石的速敏效应和伊利石的水敏效应,采用氮气爆破压裂造缝效果明显。压裂初期东西两翼裂缝扩展不均衡,西翼较长,东翼略短。压裂完成后东西两翼裂缝缝长变化相近,裂缝总长276 m。压裂后排采数据显示:气产量维持在790 m~3/d左右,且能保持稳产。相比普通水力压裂,优化后压裂施工效果显著。
        8_1 coal seam floor rock from Sijiazhuang mine of Yangquan Mining area had a large amount of coal measure gas,but there was still no ideal effect at present. The analyse results of clay minerals components in the target layer showed: the clay minerals of rock were kaolinite and illite,and the contents of these two clay minerals were close. Points at speed sensitive effect of kaolinite and water sensitive effect of illite,effects of nitrogen gas blasting fracturing were obvious. Fracture expansion of the east and west wing at the early stage of fracturing was unbalance,the west wing was long and the east wing was short. After fracturing,the crack length of the east and west wings were similar,total crack length were 276 m. The display data of drainage after fracturing showed: gas production was maintained at about 790 m~3/d,and kept stable production. Compared to ordinary hydraulic fracturing,the effect of the postoptimality fracturing construction was remarkable.
引文
[1]郑栓龙,梁爱堂,张文清,等.寺家庄公司综掘工作面瓦斯涌出量影响因素分析[J].煤炭技术,2009,28(9):106-107.Zheng Shuanlong,Liang Aitang,Zhang Wenqing,et al. Analysis on influencing factors of methane emission at integrated driving coal face in Sijiazhuang Coal Mine[J]. Coal Technology,2009,28(9):106-107.
    [2]杨程涛,侯玉亭,王发家.寺家庄矿掘进工作面瓦斯流量影响因素分析[J].煤,2010,19(9):51-52.Yang Chengtao,Hou Yuting,Wang Fajia. Analysis on influencing factors of gas flow in heading face of Sijiazhuang Mine[J]. Coal,2010,19(9):51-52.
    [3]栾鹏飞.寺家庄矿高瓦斯矿井煤巷掘进防突技术实践[J].煤炭与化工,2016,39(5):141-142.Luan Pengfei. Practice of outburst prevention for coal roadway driving in high gas mine in Sijiazhuang Mine[J]. Coal and Chemical Industry,2016,39(5):141-142.
    [4]徐占杰,刘钦甫,宋璞,等.寺家庄井田陷落柱对煤层气井产出水地球化学特征的影响[J].煤田地质与勘探,2017,45(2):50-54.Xu Zhanjie,Liu Qinfu,Song Pu,et al. Effect of karstic collapse column on hydrogeochemistry of produced water from coalbed methane wells in Sijiazhuang Mine Field[J]. Coal Geology&Exploration,2017,45(2):50-54.
    [5]郝春生.阳泉寺家庄矿煤储层孔裂隙系统及渗透性特征[J].山西焦煤科技,2015(9):53-55.Hao Chunsheng. Pore fracture system and permeability characteristics of coal reservoirs in the Sijiazhuang Coal Mine of Yangquan[J]. Shanxi Coking Coal Science&Technology,2015(9):53-55.
    [6]喻鹏,杨延辉,朱庆忠,等.沁水盆地高阶煤层气压裂工艺反思与技术改进试验研究[J].中国煤层气,2015,12(1):21-26.Yu Peng,Yang Yanhui,Zhu Qingzhong,et al. Study on CBM fracturing technology and technical improvement test for high-rank coal in Qinshui Basin[J]. China Coalbed Methane,2015,12(1):21-26.
    [7]冯虎,徐志强.沁水盆地煤层气压裂典型曲线分析及应用[J].煤炭工程,2015,47(8):116-118.Feng Hu,Xu Zhiqiang. Analysis and application of fracturing typical curve of CBM well in Qinshui Basin[J]. Coal Engineering,2015,47(8):116-118.
    [8]刘智恪,谭锐,牛增前,等.山西煤层气井压裂工艺技术与研究[J].油气井测试,2014,23(2):45-47.Liu Zhike,Tan Rui,Niu Zengqian,et al. Fracturing technology and research of coal bed gas well in Shanxi[J]. Well Testing,2014,23(2):45-47.
    [9]张军涛,郭庆,汶锋刚.深层煤层气压裂技术的研究与应用[J].延安大学学报(自然科学版),2015,34(1):78-80.Zhang Juntao,Guo Qing,Wen Fenggang. Research and application of deep coal bed methane fracturing technology[J]. Journal of Yan'an University(Natural Science Edition),2015,34(1):78-80.
    [10]蔡峰,刘泽功.深部低透气性煤层上向穿层水力压裂强化增透技术[J].煤炭学报,2016,41(1):113-119.Cai Feng,Liu Zegong. Simulation and experimental research on upward cross-seams hydraulic fracturing in deep and low-permeability coal seam[J]. Journal of China Coal Society,2016,41(1):113-119.
    [11]林英松,周雪,韩帅.煤层气压裂裂缝起裂扩展规律研究[J].煤炭技术,2014,33(4):115-117.Lin Yingsong,Zhou Xue,Han Shuai. Research of coalbed methane fracturing crack initiation and propagation law[J]. Coal Technology,2014,33(4):115-117.
    [12]杨勇,刘红,孙瑞娜,等.煤层气压裂技术综述[J].石化技术,2015,22(9):122.Yang Yong,Liu Hong,Sun Ruina,et al. A summary of the technology of coal bed fracturing[J]. Petrochemical Industry Technology,2015,22(9):122.
    [13]陈龙龙,王维波.低渗储层岩心速敏性评价实验[J].石化技术,2015,22(7):133-134.Chen Longlong,Wang Weibo. Lower penetration reserviors core speed sensitivity evacuation test[J]. Petrochemical Industry Technology,2015,22(7):133-134.
    [14]赵振铎,闫百泉.松辽盆地F油层高岭石、伊利石对储层物性、敏感性影响的实验研究[J].岩石矿物学杂志,2014,33(5):947-954.Zhao Zhenduo,Yan Baiquan. Effects of kaolinite and illite on physical property and sensitivity damage in the F reservoir of the Songliao Basin[J]. Acta Petrologica et Mineralogica,2014,33(5):947-954.
    [15]曾伟,董明,孔令明,等.鄂尔多斯盆地苏里格气田中、下二叠统砂岩储层敏感性影响因素分析[J].天然气勘探与开发,2011,34(3):31-34.Zeng Wei,Dong Ming,Kong Lingming,et al. Analysis of sensitivity factors of middle and lower two member sandstone reservoirs in Sulige gas of Ordos Basin[J]. Natural Gas Exploration and Development,2011,34(3):31-34.
    [16]段银鹿,李倩,姚韦萍.水力压裂微地震裂缝监测技术及其应用[J].断块油气田,2013,20(5):644-648.Duan Yinlu,Li Qian,Yao Weiping. Microseismic fracture monitoring technology of hydraulic fracturing and its application[J].Fault-Block Oil and Gas Field,2013,20(5):644-648.
    [17]温庆志,刘华,李海鹏,等.油气井压裂微地震裂缝监测技术研究与应用[J].特种油气藏,2015,22(5):141-144.Wen Qingzhi,Liu Hua,Li Haipeng,et al. Research and application of microseismic fracture monitoring technology for fracturing of oil and gas wells[J]. Special Oil and Gas Reservoirs,2015,22(5):141-144.
    [18]王树军,刘建伟,高浩宏,等.井下微地震裂缝监测技术在火山岩压裂中的应用[J].吐哈油气,2011,16(1):24-26.Wang Shujun,Liu Jianwei,Gao Haohong,et al. Application of downhole microseismic fracture monitoring technique in volcanic reservoir[J]. Tuha Oil&Gas,2011,16(1):24-26.
    [19]严永新,张永华,陈祥,等.微地震技术在裂缝监测中的应用研究[J].地学前缘,2013,20(3):270-274.Yan Yongxin,Zhang Yonghua,Chen Xiang,et al. The application of micro-seismic technology in fracture monitoring[J]. Earth Science Frontiers,2013,20(3):270-274.
    [20]杨炳祥,杨英涛,李榕,等.井下微地震裂缝监测技术在水平井分段压裂中的应用[J].钻采工艺,2014,37(4):48-50.Yang Bingxiang,Yang Yingtao,Li Rong,et al. Application of downhole microseismic fracture monitoring technology in staged fracturing of horizontal wells[J]. Drilling&Production Technology,2014,37(4):48-50.
    [21]王建江.井下微地震裂缝监测技术在具裂缝—基质双重介质储层油藏中的应用[J].新疆石油科技,2013,23(3):16-18.Wang Jianjiang. Application of downhole microseismic fracture monitoring technology in fractured matrix dual media reservoir[J].Xinjiang Petroleum Science&Technology,2013,23(3):16-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700