用户名: 密码: 验证码:
SiO_2气凝胶提高岩棉和玻璃棉性能的实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study on improving the performance of rock wool and glass wool by silica aerogel
  • 作者:闫秋会 ; 孙晓阳 ; 罗杰任 ; 吴志菊 ; 周聪
  • 英文作者:YAN Qiuhui;SUN Xiaoyang;LUO Jieren;WU Zhiju;ZHOU Cong;School of Building Services Science and Engineering, Xi'an University of Architecture and Technology;Institute of Urban Planning and Municipal Engineering, Xi'an Polytechnic University;Shaanxi Zhongmei New Energy Co., Ltd;
  • 关键词:SiO2气凝胶 ; 溶液 ; 岩棉/SiO2气凝胶复合板 ; 玻璃棉/SiO2气凝胶复合板 ; 复合材料 ; 热导率
  • 英文关键词:silica aerogel;;solution;;rock wool/SiO2aerogel combined board;;glass wool/SiO2aerogel combined board;;composites;;thermal conductivity
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:西安建筑科技大学建筑设备科学与工程学院;西安工程大学城市规划与市政工程学院;陕西中煤新能源有限公司;
  • 出版日期:2019-05-14 10:11
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.333
  • 基金:陕西省科技厅重点研发计划(2018SF-355);; 动力工程多相流国家重点实验室开放基金;; 西安市碑林区科技计划(GX1804)
  • 语种:中文;
  • 页:HGJZ201906034
  • 页数:7
  • CN:06
  • ISSN:11-1954/TQ
  • 分类号:315-321
摘要
以无水乙醇为溶剂,SiO_2气凝胶为溶质,制取SiO_2气凝胶改性溶液。采用浸润及常压干燥的方法制备岩棉/SiO_2气凝胶复合板和玻璃棉/SiO_2气凝胶复合板,研究不同质量分数的SiO_2气凝胶对复合板的短期吸水量、热导率及抗压强度的影响,并分析SiO_2气凝胶质量分数为8%时制备的岩棉/SiO_2气凝胶复合板和玻璃棉/SiO_2气凝胶复合板的改性效果,进而采用扫描电镜对复合板的微观形貌进行了表征。结果表明,SiO_2气凝胶均匀附着于无机纤维上,形成了较为稳定的复合体系;随着SiO_2气凝胶质量分数的不断增加,岩棉/SiO_2气凝胶复合板和玻璃棉/SiO_2气凝胶复合板的短期吸水量和热导率都逐渐减小,其抗压强度有一定的提升。比较改性后的岩棉和玻璃棉,后者的防水性能和抗压强度改善更明显。当SiO_2气凝胶质量分数达到8%时,岩棉/SiO_2气凝胶复合板和玻璃棉/SiO_2气凝胶复合板的短期吸水量较改性前分别下降了35.0%和36.2%,热导率分别下降了26.7%和18.3%,抗压强度分别提升了6.5%和102.9%。
        Modified silica aerogel solution was prepared with anhydrous ethanol as solvent and silica aerogel as solute. The rock wool/SiO_2 aerogel composite board and glass wool/SiO_2 aerogel composite board were prepared by infiltration and prevailing pressure drying. Firstly, the effects of different mass percentages of silica aerogel on short-term water absorption, thermal conductivity and compression strength of the two kinds of composite boards were studied. Secondly, the performance of the prepared composite boards was analyzed when the mass percentages of SiO_2 aerogel was 8%. Finally, the microstructure of the composite boards was characterized by scanning electron microscopy. The results showed that SiO_2 aerogel was uniformly attached to the inorganic fibers to form a relatively stable composite system. With the increase of the mass fraction of SiO_2 aerogel, the short-term water absorption and thermal conductivity of the composite boards were gradually reduced, and the compression strength was increased. Compared with the modified rock wool, the modified glass wool had better waterproof performance and better compression strength. When the mass fraction of SiO_2 aerogel reached 8%, the short-term water absorption, the thermal conductivity and the compression strength of the rock wool/SiO_2 aerogel composite board and the glass wool/SiO_2 aerogel composite board decreased by 35.0% and 36.2%,26.67% and 18.3% and increased by 6.5% and 102.9% respectively, in comparison with those of the original materials.
引文
[1] LI D, HE J, LI L. A review of renewable energy applications in buildings in the hot-summer and warm-winter region of China[J].Renewable&Sustainable Energy Reviews, 2016, 57:327-336.
    [2]李振宇,黄格省,黄晟.推动我国能源消费革命的途径分析[J].化工进展, 2016, 35(1):1-9.LI Z Y, HUANG G S, HUANAG S. Analysis on ways to promote energy consumption revolution in China[J]. Chemical Industry and Engineering Progress, 2016, 35(1):1-9.
    [3]贾冠华,刘鹏,李珠.气凝胶/膨胀珍珠岩的制备及其微观特征对导热性能的影响[J].硅酸盐通报, 2018(3):1039-1046.JIA G H, LIU P, LI Z. Preparation of aerogel/expanded perlite and effect of its microstructure on thermal conductivity[J]. Bulletin of the Chinese Ceramic Society, 2018(3):1039-1046.
    [4]胡验君,苏振国,杨金龙.建筑外墙外保温材料的研究与应用[J].材料导报, 2012, 26(s2):290-294.HU Y J, SU Z G,YANG J L. Research status and application of external wall thermal insulation materials[J]. Materials Review,2012,26(s2):290-294.
    [5]朱群洲.无机保温材料在建筑外墙保温中的应用[J].工程技术(文摘版), 2016(6):00274.ZHU Q Z. Application of inorganic thermal insulation materials in building exterior wall insulation[J]. Engineering Technology, 2016(6):00274.
    [6]王岩,王祎玮,白锡庆,等.墙体保温材料的现状及其发展趋势[J].天津建设科技, 2017, 27(1):1-3.WANG Y, WANG Y W, BAI X Q, et al. Current status and development trend of wall insulation materials[J]. Tianjin Construction Science and Technology, 2017, 27(1):1-3.
    [7]段远源,林杰,王晓东,等.二氧化硅气凝胶的气相热导率模型分析[J].化工学报, 2012, 63(s1):54-58.DUAN Y Y, LIN J, WANG X D, et al. Analysis of gaseous thermal conductivity models for silica aerogels[J]. CIESC Journal, 2012, 63(s1):54-58.
    [8]方文振,张虎,屈肖迪,等.遮光剂对气凝胶复合材料隔热性能的影响[J].化工学报, 2014, 65(s1):168-174.FANG W Z, ZHANG H, QU X D, et al. Influence of opacifiers on thermal insulation properties of composite aerogels[J]. CIESC Journal,2014, 65(s1):168-174.
    [9]何方,吴菊英,黃渝鸿,等.影响二氧化硅气凝胶隔热涂料热导率的因素[J].化工进展, 2014, 33(8):2134-2139.HE F, WU J Y, HUANG Y H, et al. Effect of contents and sizes on the thermal conductivity of silica aerogel thermal insulation coatings[J].Chemical Industry and Engineering Progress, 2014, 33(8):2134-2139.
    [10]姚鹏. SiO2气凝胶前驱制备及其在保温领域的改性研究[D].开封:河南大学, 2014.YAO P. SiO2aerogel precursor preparation and modification research in the field of insulation[D]. Kaifeng:Henan University,2014.
    [11] CUCE E, CUCE P M, WOOD C J, et al. Toward aerogel based thermal superinsulation in buildings:a comprehensive review[J]. Renewable&Sustainable Energy Reviews, 2014, 34(3):273-299.
    [12]韩金光,李珠,贾冠华.膨胀珍珠岩的纳米气凝胶改性及其应用[J].科学技术与工程, 2016, 16(12):136-140.HAN J G, LI Z, JIA G H. Expanded perlite modified by nano aerogel and its application[J]. Science Technology and Engineering, 2016,16(12):136-140.
    [13] HOSEINI A, MCCAGUE C, ANDISHEH-TADBIR M, et al. Aerogel blankets:from mathematical modeling to material characterization and experimental analysis[J]. International Journal of Heat&Mass Transfer, 2016, 93:1124-1131.
    [14]余煜玺,吴晓云,伞海生.常压干燥制备疏水性SiO2-玻璃纤维复合气凝胶及表征[J].材料工程, 2015, 43(8):31-36.YU Y X, WU X Y, SAN H S. Preparation and characterization of hydrophobic SiO2-glass fibers aerogels via ambient pressure drying[J].Journal of Materials Engineering, 2015, 43(8):31-36.
    [15]石小靖,张瑞芳,何松,等.玻璃纤维增SiO2气凝胶复合材料的制备及隔热性能[J].硅酸盐学报, 2016, 44(1):129-135.SHI X J, ZHANG R F, HE S, et al. Synthesis and heat insulation performance of glass fiber reinforced SiO2aerogel composites[J].Journal of the Chinese Ceramic Society, 2016, 44(1):129-135.
    [16]吴会军,梁雄龙,陈奇良,等.整体成型法制备气凝胶隔热保温复合材料[J].广州大学学报(自然科学版), 2015, 14(6):36-40.WU H J, LIANG X L, CHEN Q L, et al. Preparation of aerogel composites by monolithic forming method for thermal insulation[J].Journal of Guangzhou University(Natural Science Edition), 2015, 14(6):36-40.
    [17] PADMANABHAN S K, HAQ E U, LICCIULLI A. Synthesis of silica cryogel-glass fiber blanket by vacuum drying[J]. Ceramics International, 2016, 42(6):7216-7222.
    [18]马佳,沈晓冬,崔升,等.纤维增强二氧化硅气凝胶复合材料的制备和低温性能[J].材料导报, 2015, 29(20):43-46.MA J, SHEN X D, CUI S, et al. Preparation and low-temperature properties of fiber reinforced SiO2aerogel composites[J]. Materials Review, 2015, 29(20):43-46.
    [19]王晓杰. SiO2气凝胶的快速合成及其复合隔热材料研究[D].大连:大连工业大学, 2013.WANG X J. Rapid synthesis of silica aerogel and its composite heat insulation materials[D]. Dalian:Dalian Polytechnic University, 2013.
    [20]杨斌,章继峰,梁文彦,等.玻璃纤维表面纳米SiO2改性对GF/PCBT复合材料力学性能的影响[J].复合材料学报, 2015, 32(3):691-698.YANG B,ZHANG J F, LIANG W Y, et al. Effects of glass fiber surface modified by nano-SiO2on mechanical properties of GF/PCBT composites[J]. Acta Materiae Compositae Sinica, 2015, 32(3):691-698.
    [21]刘洪丽,安国庆,何翔,等.硅藻土/SiO2气凝胶复合材料的制备[J].新型建筑材料, 2018(5):121-124,130.LIU H L, AN G Q, HE X, et al. Preparation of diatomite/SiO2aerogel composites[J]. New Building Materials,2018(5):121-124,130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700