用户名: 密码: 验证码:
局部冲刷坑发展过程的泥沙输运特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the mechanism of water-sediment interaction in the scouring process around a pile
  • 作者:齐梅兰 ; 石粕辰
  • 英文作者:QI Meilan;SHI Pochen;School of Civil Engineering,Beijing Jiaotong University;Beijing Key Laboratory of Structural Wind Engineering and Urban Wind Environment;
  • 关键词:局部冲刷 ; 床面切应力 ; 马蹄涡流 ; 泥沙输运 ; 悬移质 ; 推移质
  • 英文关键词:local scouring;;bed shear stress;;horseshoe vortex;;sediment transport;;suspended load;;bed load
  • 中文刊名:SLXB
  • 英文刊名:Journal of Hydraulic Engineering
  • 机构:北京交通大学土木建筑工程学院;北京交通大学结构风工程与城市风环境北京市重点实验室;
  • 出版日期:2018-12-15
  • 出版单位:水利学报
  • 年:2018
  • 期:v.49;No.507
  • 基金:国家自然科学基金项目(51578062);; 中国铁路总公司科技研究开发计划项目(2014G009-H)
  • 语种:中文;
  • 页:SLXB201812004
  • 页数:10
  • CN:12
  • ISSN:11-1882/TV
  • 分类号:37-46
摘要
为揭示水流作用下沙质河床结构物周围床面冲刷过程中的泥沙输运特性,采用三维紊流、考虑推移质和悬移质运动的河床变形数值模拟,研究了清水冲刷和动床冲刷条件下,墩柱型结构物局部冲刷过程中悬移质和推移质泥沙输运贡献及其与马蹄涡流特征量、床面切应力以及泥沙悬浮指数的相关性。研究发现,清水冲刷条件下,悬移质输运占比较小,推移质泥沙输运占优;动床冲刷条件下,悬移质输运的贡献随悬浮指数的减小迅速增大;冲刷过程中悬移质和推移质输沙率与床面切应力变化趋势一致,结构物周围局部切应力的大小与马蹄涡涡量呈正相关关系。
        Aimed at exploration of the sediment transport behavior in local scouring process around a structure,3D turbulent flow equations coupled with bedload and suspended load transport,as well as bed deformation were used to numerically simulate the local scour and investigate the contribution of the two kindsof sediment transportation,horse-shoe vortex,and the correlation of suspended load with the sediment sus-pension index under clear water and livebed conditions. It was found that under the clear water scour condi-tion,the transport of suspended load contributes a relatively small proportion,and the scouring process isdominated by bed load transport which contributes approximately up 95 percent. Under the live bed scourcondition,suspended load transport increases rapidly with the decrease of the particle suspension index. Inthe scouring process,the variation of sediment transport rate for suspended load and bed load is consistentwith the trend of the local shear stress around the structure. Further,the variation of the bed shear stress is positively controlled by the horseshoe vortex.
引文
[1] MELVILLE B W,COLEMAN S E. Bridge Scour[M]. Water Resources Publication,2000.
    [2] QI M,LI J,CHEN Q. Comparison of existing equations for local scour at bridge piers:parameter influence and validation[J]. Natural Hazards,2016,82(3):2089-2105.
    [3] ETTEMA R,CONSTANTINESCU G,MELVILLE B W. Flow-field complexity and design estimation of pierscour depth:Sixty years since Laursen and Toch[J]. Journal of Hydraulic Engineering,2017,143(9):03117006.
    [4] CHENG Z,KOKEN M,CONSTANTINESCU G. Approximate methodology to account for effects of coherent structures on sediment entrainment in RANS simulations with a movable bed and Applications to pier scour[J].Advances in Water Resources,http://dx.doi.org/10.1016/j.advwatres. 2017.05.019.
    [5] THORSTEN Stoesser. Large-eddy simulation in hydraulics:Quo Vadis?[J]. Journal of Hydraulic Research,2014,52(4):441-452.
    [6] PAIK J,GE L,SOTIROPOULOS F. Toward the simulation of complex 3D shear flows using unsteady statistical turbulence models[J]. International Journal of Heat&Fluid Flow,2004,25(3):513-527.
    [7] RODI W. Turbulence modeling and simulation in hydraulics:a historical review[J]. Journal of Hydraulic Engineering,2017,143(5):03117001.
    [8] YAKHOT V,ORSZAG S A,THANGAM S,et al. Development of turbulence models for shear flows by a double expansion technique[J]. Physics of Fluids A,1992,4(7):1510-1520.
    [9] LYN D A. Turbulence Models for Sediment Transport Engineering[C]//Sedimentation Engineering ASCE,2014.
    [10] OLSEN N R B,KJELLESVIG H M. Three-dimensional numerical flow modeling for estimation of maximum local scour depth[J]. Journal of Hydraulic Research,1998,36(4):579-590.
    [11] ROULUND A,MUTLU SUMER B,FREDS?E J,et al. Numerical and experimental investigation of flow and scour around a circular pile[J]. Journal of Fluid Mechanics,2005,534:351-401.
    [12] BURKOW M,GRIEBEL M. A full three dimensional numerical simulation of the sediment transport and the scouring at a rectangular obstacle[J]. Computers&Fluids,2016,125:1-10.
    [13] DIXEN M,SUMER B M,FREDS?E J. Numerical and experimental investigation of flow and scour around a halfburied sphere[J]. Costal Eng.,2013,73:84-105.
    [14] JIA Y,ALTINAKAR M,GUNEY M S. Three-dimensional numerical simulations of local scouring around bridge piers[J]. Journal of Hydraulic Research,2017:1-16.
    [15] BAYKAL C,SUMER B M,FUHRMAN D R,et al. Numerical investigation of flow and scour around a vertical circular cylinder[J]. Philos. Trans. A. Math. Phys. Eng. Sci.,2014,373(2033). doi:10.1098/rsta2014.0104.
    [16] CASTILLO L G,CARRILLO J M. Comparison of methods to estimate the scour downstream of a ski jump[J]. International Journal of Multiphase Flow,2017,92:171-180.
    [17] MOHAMMAD S A,HANS B,ARUN K,et al. Three-dimensional numerical modeling of pier scour under current and waves using level-set method[J]. Journal of Offshore Mechanics&Arctic Engineering,2015,137,0320017:1-7.
    [18] ALEMI M,MAIA R. Numerical simulation of the flow and local scour process around single and complex bridge piers[J]. International Journal of Civil Engineering,2016:1-13.
    [19] RADICE A,MALAVASI S,BALLIO F. Sediment kinematics in abutment scour[J]. Journal of Hydraulic Engineering,2008,134(2):146-156.
    [20] GE L,LEE S O,SOTIROPOULOS F,et al. 3D unsteady RANS modeling of complex hydraulic engineering flows. II:Model validation and flow physics[J]. Journal of Hydraulic Engineering,2005,131(9):809-820.
    [21] SOULSBY R. Dynamics of Marine Sands:a Manual for Practical Applications[M]. Thomas Telford,1997.
    [22] MEYER-PERTER E. Formulas for bed-load transport[C]//Proc. 2rd IAHR Congr,1948.
    [23] FREDS?E J,DEIGAARD R. Mechanics of Coastal Sediment Transport[M]. World Scientific,1992.
    [24] RIJN L C V. Sediment transport,part II:suspended load transport[J]. Journal of Hydraulic Engineering,1984,110(11):1613-1641.
    [25] MELVILLE B W. Local scour at bridge sites[D]. School of Engineering,University of Auckland,New Zealand,1975.
    [26]陈启刚,齐梅兰,李金钊.明渠柱体上游马蹄涡的运动学特征研究[J].水利学报,2016,47(2):158-164.
    [27] LI J,QI M,FUHRMAN D,et al. Influence of turbulent horseshoe vortex and associated bed shear stress on sediment transport in front of a cylinder[J]. Experimental Thermal and Fluid Science,2018,97:444-457.
    [28] KHOSRONEJAD A,KANG S,SOTIROPOULOS F. Experimental and computational investigation of local scour around bridge piers[J]. Advances in Water Resources,2012,37(1):73-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700