用户名: 密码: 验证码:
致密砂砾岩储层纳米吸附气实验分析技术及其应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experiment analyzing technique of the nano-pore absorbed gas in the tight conglomerate reservoir and its application
  • 作者:张居和 ; 张琨 ; 司万霞
  • 英文作者:ZHANG Juhe;ZHANG Kun;SI Wanxia;Exploration and Development Research Institute of Daqing Oilfield Co Ltd.;Heilongjiang Key Laboratory of Tight Oil and Mudstone Oil Accumulations;
  • 关键词:徐家围子 ; 沙河子组储层 ; 纳米吸附气 ; 烃组分含量 ; 组分碳同位素
  • 英文关键词:Xujiaweizi;;Shahezi-Formation reservoir;;nano-pore absorbed gas;;hydrocarbon component content;;component carbon isotope
  • 中文刊名:DQSK
  • 英文刊名:Petroleum Geology & Oilfield Development in Daqing
  • 机构:大庆油田有限责任公司勘探开发研究院;黑龙江省致密油和泥岩油成藏研究重点实验室;
  • 出版日期:2019-01-22 18:13
  • 出版单位:大庆石油地质与开发
  • 年:2019
  • 期:v.38;No.192
  • 基金:中国石油天然气股份公司重大科技专项课题“大庆探区非常规油气实验技术研究”(2012E-2603)
  • 语种:中文;
  • 页:DQSK201902020
  • 页数:8
  • CN:02
  • ISSN:23-1286/TE
  • 分类号:139-146
摘要
松辽盆地徐家围子断陷沙河子组致密砂砾岩气勘探在Xt1井等取得重大突破,拓展了深层天然气勘探的新领域,但致密气储层含气性实验分析技术及评价相对薄弱。利用岩石纳米级样品制备装置和纳米吸附气提取装置,开展致密砂砾岩储层纳米吸附气提取、色谱检测条件及优化实验,确定了岩石纳米级样品最佳制样时间为20 min,纳米吸附气提取的最佳质量为20 g、时间为20 min、温度为80℃;气相色谱检测的最佳分析柱为OV-1填充柱,载气流速为40 mL/min,柱温50℃恒温0.5 min、以10℃/min升温到100℃恒温5 min,实验分析技术具有精确度高、快速等特点。徐家围子断陷沙河子组致密砂砾岩纳米吸附气实验分析结果表明,总烃质量体积为233.21~10 487.38μL/kg,不同井纳米吸附气烃组分特征差别明显,致密气具有近源成藏特征,源岩发育区为致密气有利探区,与致密砂砾岩储层压裂试气结果一致性好,为致密气储层含气性评价及勘探提供了实验依据。
        Great breakthrough has been achieved in Well Xt1 and the other wells for the tight conglomerate gas exploration in Shahezi Formation of Xujiaweizi in Songliao Basin, thus the new field of the deep gas exploration has been expanded, however the analyzing technique and evaluation of the gas-bearing experiment for the tight gas reservoir are rather weak and limited. With the help of the preparing equipment of the nano-size rock sample and the desorbing instrument of the nano-size absorbed gas, the experiments of the desorption, chromatographic testing conditions and their optimizations were conducted for the tight conglomerate reservoir, the optimal prepared time(20 min) of the nano-size sample, the best desorbed mass(20 g) and time(20 min) and furthermore the temperature(80 ℃) of the nano-size absorbed gas were determined; the best analytical column of the gas-phase chromatographic test is OV-1 filling column, the flow rate of the carried gas is 40 mL/min, the column temperature is 50 ℃, the constant temperature lasts 0.5 min, the temperature rises to 100 ℃ and lasts for 5 min by 10 ℃/min, the experimental analyzing technique is characterized by high precision, rapid speed and so forth. The results of the experimental analysis of the nano-size absorbed gas for Shahezi-Formation tight conglomerate in Xujiaweizi show that the total hydrocarbon content is 233.21-10 487.38 μL/kg, the differences are rather obvious for the component characteisitics of the different-well nano-size absorbed gas, the tight gas possesses the feature of near-source reservoir accumulation, the well-developed source area is the favorable block of the tight gas, the achievements are well accordant with the results of the tested gas for the fractured tight conglomerate reserovir, so the experimental evidences are provided for the gas-bearing evaluation and exploration of the tight gas reservoir.
引文
[1]贾承造,邹才能,李建忠,等.中国致密油评价标准、主要类型、基本特征及资源前景[J].石油学报,2012,33(3):343-350.JIA Chengzao, ZOU Caineng, LI Jianzhong, et al. Assessment criteria, main types, basic features and resource prospects of the tight oil in China [J].Acta Petrolei Sinica, 2012, 33 (3): 343-350.
    [2]谌卓恒,OSADETZ K G.西加拿大沉积盆地Cardium 组致密油资源评价[J].石油勘探与开发, 2013, 40(3): 320-328.CHEN Zhuoheng, OSADETZ K G. An assessment of tight oil resource potential in the Upper Cretaceous Cardium Formation, western Canada sedimentary basin[J].Petroleum Exploration and Development, 2013,40 (3):320-328.
    [3]SCHMOKER J W. Resource-assessing perspectives for unconventionalgas systems[J].AAPG Bulletin, 2002, 86(11): 1993-2000.
    [4]SPE, AAPG, WPC, et al. Petroleum resources management system[R].Washington D C: IEA, 2007:1-47.
    [5]RICHARD F M, EMIL D A. Heavy oil and natural bitumen: Strategic petroleum resources[R].Tulsa: USGS, 2003.
    [6]MARTIN R,BAIHLY J,MALPANI R,et al. Understanding production from Eagleford-Austin chalk system[R]. SPE 145117,2011:1-28.
    [7]邹才能,杨智,陶士振,等. 纳米油气与源储共生型油气聚集[J].石油勘探与开发, 2012, 39(1): 13-26. ZOU Caineng, YANG Zhi, TAO Shizhen, et al. Nano-hydrocarbon and the accumulation in coexisting source and reservoir[J].Petroleum Exploration and Development, 2012, 39 (1):13-26.
    [8]贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J].石油勘探与开发, 2012, 39(2): 129-136.JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J].Petroleum Exploration and Development, 2012, 39 (2):129-136.
    [9]陈世加,张焕旭,路俊刚,等. 四川盆地中部侏罗系大安寨段致密油富集高产控制因素[J].石油勘探与开发, 2015, 42(2): 186-193. CHEN Shijia, ZHANG Huanxu, LU Jungang, et al. Controlling factors of Jurassic Da'anzhai Member tight oil accumulation and high production in central Sichuan Basin, SW China [J].Petroleum Exploration and Development, 2015, 42 (2):186-193.
    [10]邹才能,朱如凯,白斌,等. 中国油气储层中纳米孔首次发现及其科学价值[J].岩石学报, 2011,27(6): 1857-1864.ZOU Caineng, ZHU Rukai, BAI Bin, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J].Acta Petrologica Sinica, 2011, 27 (6): 1857-1864.
    [11]EPRS.Unconventional gas and oil in North America[M].New Hampshire:Gregor Erbach,2014:1-24.
    [12]邹才能,杨智,张国生,等.常规-非常规油气“有序聚集”理论认识及实践意义[J]. 石油勘探与开发, 2014, 41(1):14-27. ZOU Caineng, YANG Zhi, ZHANG Guosheng, et al. Conventional and unconventional petroleum “orderly accumulation”:Concept and practical significance[J].Petroleum Exploration and Development, 2014, 41 (1):14-27.
    [13]王志战,翟晓薇,秦黎明,等. 页岩油气藏录井技术现状及发展思路[J]. 录井工程,2013,24(3):1-5.WANG Zhizhan, ZHAI Xiaowei, QIN Liming, et al. Overview on shale oil and gas logging technology[J].Mud Logging Engineering, 2013, 24 (3):1-5.
    [14]吴思仪,司马立强,袁龙,等. 苏北盆地致密砂岩油藏气测录井评价方法[J].录井工程,2014,25(3):41-45.WU Siyi, SIMA Liqiang, YUAN Long, et al. Gas logging evaluation methods for tight sandstone reservoir in Subei Basin[J].Mud Logging Engineering, 2014, 25 (3): 41-45.
    [15]杨智,邹才能,吴松涛,等. 含油气致密储层纳米级孔喉特征及意义[J].深圳大学学报理工版, 2015, 32(3):257-265.YANG Zhi, ZOU Caineng, WU Songtao, et al. Characteristics of nano-sized pore-throat in unconventional tight reservoir rocks and its scientific value[J].Journal of Shenzhen University (Science and Engineering Edition), 2015,32(3): 257-265.
    [16]马勇,钟宁宁,黄小艳,等. 聚集离子束扫描电镜( FIB-SEM) 在页岩纳米级孔隙结构研究中的应用[J].电子显微学报, 2014,33(3): 251-255.MA Yong, ZHONG Ningning, HUANG Xiaoyan, et al. The application of focused ion beam scanning electron microscope (FIB-SEM) to the nanometer-sized pores in shales[J].Journal of Chinese Electron Microscopy Society, 2014, 33 (3): 251-255.
    [17]赵二猛,尹洪军,徐志涛. 纳米尺度下页岩气运移特征分析[J].河南科学,2015,33(8):1422-1427.ZHAO Ermeng, YIN Hongjun, XU Zhitao. Analysis of shale gas migration characteristics at nanometer scale[J].Henan Science, 2015,33 (8): 1422-1427.
    [18]李智锋,李治平,苗丽丽,等. 页岩气藏纳米孔隙气体渗流特征分析[J].天然气地球科学,2013,23(5):1042-1047. LI Zhifeng, LI Zhiping, MIAO Lili, et al. Gas flow characteristics in nanoscale pores of shale gas[J].Natural Gas Geosciences, 2013, 23 (5): 1042-1047.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700