用户名: 密码: 验证码:
泡沫钛孔隙结构及力学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Pore Structure and Mechanical Properties of Titanium Foam
  • 作者:王耀奇 ; 刘培生 ; 侯红亮 ; 张艳苓
  • 英文作者:Wang Yaoqi;Liu Peisheng;Hou Hongliang;Zhang Yanling;Beijing Aeronautical Manufacturing Technology Research Institute;Beijing Key Laboratory of Digital Plasticity Forming Technology and Equipment;Aeronautical Key Laboratory for Plastic Forming Technologies;The Key Laboratory of Beam Technology and Material Modification of Ministry of Education,Beijing Normal University;
  • 关键词:挂浆烧结法 ; 泡沫钛 ; 孔隙结构 ; 力学性能
  • 英文关键词:slurry method;;titanium foam;;pore structure;;mechanical properties
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:北京航空制造工程研究所;数字化塑性成形技术及装备北京市重点实验室;塑性成形技术航空科技重点实验室;射线束技术与材料改性教育部重点实验室北京师范大学;
  • 出版日期:2017-06-15
  • 出版单位:稀有金属材料与工程
  • 年:2017
  • 期:v.46
  • 基金:中航工业集团创新基金(2012E62523R)
  • 语种:中文;
  • 页:COSE2017S1028
  • 页数:5
  • CN:S1
  • ISSN:61-1154/TG
  • 分类号:138-142
摘要
通过挂浆烧结法制备了两种不同孔隙结构的泡沫钛,利用数码相机和扫描电镜对泡沫钛孔隙结构与形貌观特征进行了观察,通过静态的室温压缩试验,测试了泡沫钛的力学性能与吸能特性。研究发现,应用挂浆烧结法制备的泡沫钛继承了先驱体的结构特征,呈三维立体网状结构,且孔棱是非致密的,存在大量的微孔。泡沫钛是应变速率不敏感的,在应变速率3×10~(-4 )s~(-1)~1×10~(-2 )s~(-1)范围内,其屈服强度为1.00~2.38 MPa,且泡沫钛具有一定的吸能特性,细孔泡沫钛和粗孔泡沫钛的最大吸能量分别为0.78和0.22 MJ/m~3。
        Two kinds of titanium foam with different pore structures were prepared by a slurry method.The pore structure and morphology of titanium foam were observed by digital camera and scanning electron microscope.The mechanical properties and energy absorption properties of titanium foam were investigated by the static compression tests.The results show that the titanium foam prepared by the slurry method inherits the structure of precursor,and has a 3D net structure.The edge of titanium foam is not compact,on which there are many fine pores.Titanium foam is not sensitive to strain rates,and the yield strength is in the range of 1.00~2.38 MPa at strain rate of 3×10~(-4)~1×10~(-2 )s~(-1).Titanium foam has the properties of absorbing energy,and the titanium foam of fine pore and coarse pore can absorb the max energy of 0.78 and 0.22 MJ/m~3,respectively.
引文
[1]Dai Changsong(戴长松),Zhang Liang(张亮),Wang Dianlong(王殿龙)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2005,34(3):337
    [2]Zhu Feng(朱峰).World Nonferrous Metals(世界有色金属)[J],2007(8):28
    [3]Niu Wenjuan(牛文娟),Bai Chenguang(白晨光),Qiu Guibao(邱贵宝)et al.Powder Metallurgy Technology(粉末冶金技术)[J],2009,27(4):301
    [4]Dunand D C.Advanced Engineering Materials[J],2004,6:369
    [5]Hu Yuebo(胡曰博),Zhang Xinna(张新娜),Sun Wenxing(孙文兴)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2009,38(S3):297
    [6]Zhang Yan(张艳),Tang Huiping(汤慧萍),Li Zengfeng(李增峰)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2010,39(S1):476
    [7]Ahmad S,Muhamad N,Muchtar A et al.International Journal of Mechanical and Materials Engineering(IJMME)[J],2010,5(2):244
    [8]Li Boqiong(李伯琼),Wang Deqing(王德庆),Lu Xing(陆兴).Journal of Dalian Railway Institute[J],2004,25(1):74
    [9]Niu Wenjuan,Bai Chenguang,Qiu Guibao et al.Materials Science and Engineering A[J],2009,506:148
    [10]Murray N G D,Dunand D C.Composites Science and Technology[J],2003,63:2311
    [11]Bing Ye,Dunand D C.Materials Science and Engineering A[J],2010,528:691
    [12]Xiang Changshu,Zhang Yan,Li Zengfeng et al.Procedia Engineering[J],2012,27:768
    [13]Liang Fanghui(梁芳慧),Wang Keguang(王克光),Zhou Lian(周廉).Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2004,33(10):1013
    [14]Vasconcellos L M R D,Oliveira M V D,Gra?a M L D A et al.Materials Research[J],2008,11(3):275
    [15]Mondal D P,Jha N,Gull B et al.Materials Science and Engineering A[J],2013,560:601
    [16]Li Q M,Magkiriadis I,Harrigan J J.Journal of Cellular Plastics[J],2006,42:371

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700