用户名: 密码: 验证码:
大九湖泥炭湿地生态系统碳水通量及水分利用效率研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Studies on Carbon-water Flux and Water Use Efficiency in Dajiuhu Peat Wetland Ecosystem
  • 作者:李金群 ; 葛继稳 ; 彭凤姣 ; 李艳元 ; 周颖 ; 李永福 ; 翁文畅
  • 英文作者:LI Jinqun;GE Jiwen;PENG Fengjiao;LI Yanyuan;ZHOU Ying;LI Yongfu;WENG Wenchang;Laboratory of Basin Hydrological and Wetland Eco-restoration,China University of Geosciences(Wuhan);Hubei Key Laboratory of Wetland Evolution and Ecological Restoration,China University of Geosciences(Wuhan);Institute of Ecology and Environmental Sciences,China University of Geosciences(Wuhan);Central Southern China Electric Power Design Institute Co.,Ltd.of China Power Engineering Consulting Group;Wuhan Wetland Institute of Ecology and Environmental Sciences;
  • 关键词:大九湖泥炭湿地 ; 生态系统 ; CO_2通量 ; H_2O通量 ; 水分利用效率(WUE) ; 蒸散量 ; 气温 ; 土壤温度
  • 英文关键词:Dajiuhu peat wetland;;ecosystem;;CO_2 flux;;H_2O flux;;Water Use Efficiency(WUE);;evapotranspiration;;temperature;;soil temperature
  • 中文刊名:KTAQ
  • 英文刊名:Safety and Environmental Engineering
  • 机构:中国地质大学(武汉)盆地水文过程与湿地生态恢复学术创新基地;中国地质大学(武汉)湿地演化与生态恢复湖北省重点实验室;中国地质大学(武汉)生态环境研究所;中国电力工程顾问集团中南电力设计院有限公司;武汉伟特伦生态环境研究所;
  • 出版日期:2019-01-30 17:24
  • 出版单位:安全与环境工程
  • 年:2019
  • 期:v.26;No.121
  • 基金:环境保护部生态环境十年变化遥感调查与评估项目(2012046151、2012046395);; 中国地质大学(武汉)中央高校基本科研业务费专项资金项目(1323521225、1323521325)
  • 语种:中文;
  • 页:KTAQ201901003
  • 页数:12
  • CN:01
  • ISSN:42-1638/X
  • 分类号:18-29
摘要
为研究大九湖泥炭湿地生态系统碳水通量及水分利用效率(WUE)的变化特征,于2015年12月至2017年11月采用涡度相关观测系统对大九湖泥炭湿地生态系统CO_2通量、H_2O通量和环境因子进行了监测。结果表明:①大九湖泥炭湿地生态系统各季节的CO_2通量和H_2O通量整体均呈现单峰型曲线,其中夏季碳水通量的变化幅度最大,冬季碳水通量的变化幅度最小;②大九湖泥炭湿地生态系统CO_2通量与H_2O通量在0.01的检验水平上显著相关,且两者的比值存在一定的函数关系,其中三次拟合效果最优,拟合优度R~2为0.38;③大九湖泥炭湿地生态系统WUE的变化范围为0.06~13.95g C/kg H_2O,其日均值为3.26g C/kg H_2O,各季节湿地生态系统WUE的变化幅度表现为夏季>冬天>秋季>春季;④大九湖泥炭湿地生态系统WUE与蒸散量(ET)的拟合关系中,夏季和冬季的拟合效果较好,随着ET的增加,湿地生态系统WUE不断减小;⑤大九湖泥炭湿地生态系统WUE与气温(T_a)的拟合关系中,夏季拟合效果较好,随着T_a的升高,湿地生态系统WUE不断减小;⑥大九湖泥炭湿地生态系统WUE与土壤温度(T_s)的拟合关系中,秋季拟合效果较好,随着T_s的升高,湿地生态系统WUE增加。该研究结果可为大九湖泥炭湿地生态系统变化趋势的预测及功能调控提供理论支持,也可为正确评价湿地生态系统碳水耦合、水分利用效率提供科学依据。
        In order to study carbon-water flux and Water Use Efficiency(WUE),this paper uses eddy covariance technology to observe CO_2 flux,H_2O flux and environmental factors from December 2015 to November 2017 in Dajiuhu peat wetland.The results show that①In Dajiuhu peat wetland,seasonal CO_2 flux and H_2O flux are all represented as a unimodal type curve.The change rule of summer is most evident and it is not obvious in winter;②There is a significant correlation between CO_2 flux and H_2O flux and functional relationship existed among them.The cubic fitting equation was optimal,with the fitting result of about 0.38;③The daily variation range of WUEin two years is 0.06~13.95 g C/kg H_2O,with a daily mean value of 3.26 g C/kg H_2O.The range in every season is summer>winter>autumn>spring;④The functional relationship between WUEand evapotranspiration(ET)is a quadratic fitting equation.The fitting results in summer and winter are better.With the increasing of evapotranspiration(ET),WUEdecreases;⑤The functional relationship between WUEand temperature(T_a)is a quadratic fitting equation.The fitting result in summer is better.With the rise of temperature(T_a),water use efficiency(WUE)decreases;⑥The functional relationship between WUEand soil temperature(t_s)is a quadratic fitting equation.The fitting result in autumn is better.With the rise of soil temperature(t_s),water use efficiency(WUE)increases.
引文
[1]陈新芳,居为民,陈镜明,等.陆地生态系统碳水循环的相互作用及其模拟[J].生态学杂志,2009,28(8):1630-1639.
    [2]刘强,刘嘉麒,贺怀宇.温室气体浓度变化及其源与汇研究进展[J].地球科学进展,2000,15(4):453-460.
    [3]Wang X X,Jiang D B,Lang X M.Future extreme climate changes linked to global warming intensity[J].Science Bulletin,2017,62(24):1673-1680.
    [4]李生荣.我国水资源的现状与对策---水资源短缺制约着我国经济社会的发展[J].延安职业技术学院学报,2009,23(6):101-103.
    [5]Mo X G,Hu S,Lin Z H,et al.Impacts of climate change on agricultural water resources and adaptation on the North China Plain[J].Advances in Climate Change Research,2017,8(2):93-98.
    [6]Distefano T,Kelly S.Are we in deep water?Water scarcity and its limits to economic growth[J].Ecological Economics,2017,142:130-147.
    [7]Mcfarlane D,Stone R,Martens S,et al.Climate change impacts on water yields and demands in south-western Australia[J].Journal of Hydrology,2012,475(19):488-498.
    [8]Twine T E,Kustas W P,Norman J M,et al.Correcting eddy-covariance flux underestimates over a grassland[J].Agricultural and Forest Meteorology,2000,103(3):279-300.
    [9]李小梅,张秋良.环境因子对兴安落叶松林生态系统CO2通量的影响[J].北京林业大学学报,2015,37(8):31-39.
    [10]宋长春,阎百兴,王跃思,等.三江平原沼泽湿地CO2和CH4通量及影响因子[J].科学通报,2003,48(23):2473-2477.
    [11]吴方涛,曹生奎,曹广超,等.青海湖高寒藏嵩草湿草甸湿地生态系统CO2通量变化特征[J].生态与农村环境学报,2018,34(2):123-131.
    [12]刘玉莉,江洪,陈健,等.安吉毛竹林碳水通量及水分利用效率的日动态研究[J].生态科学,2015,34(4):43-51.
    [13]李辉东,关德新,袁凤辉,等.科尔沁草甸生态系统水分利用效率及影响因素[J].生态学报,2015,35(2):478-488.
    [14]曹生奎,曹广超,陈克龙,等.青海湖高寒湿地生态系统CO2通量和水汽通量间的耦合关系[J].中国沙漠,2016,36(5):1286-1295.
    [15]Yu G R,Song X,Wang Q F,et al.Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables[J].New Phytologist,2008,177(4):927-937.
    [16]Valentini R,Matteucci G,Dolman A J,et al.Respiration as the main determinant of carbon balance in European forests[J].Nature,2000,404:861-865.
    [17]Law B E,Falge E,Gu L,et al.Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation[J].Agricultural and Forest Meteorology,2002,113(1/2/3/4):97-120.
    [18]Maltby E,Immirzi P.Carbon dynamics in peatlands and other wetland soils regional and global perspectives[J].Chemosphere,1993,27(6):999-1023.
    [19]Bridgham S D,Megonigal J P,Keller J K,et al.The carbon balance of North American wetlands[J].Wetlands,2006,26(4):889-916.
    [20]Batjes N H.Total carbon and nitrogen in the soils of the world[J].European Journal of Soil Science,2014,65(1):10-21.
    [21]周文昌,崔丽娟.泥炭湿地碳储量核算与其影响因素分析[J].土壤学报,2014,51(2):226-237.
    [22]Gorham E.Northern peatlands:Role in the carbon cycle and probable responses to climatic warming[J].Ecological Applications,1991,1(2):182-195.
    [23]周文昌,索朗夺尔基,崔丽娟,等.排水对若尔盖高原泥炭地土壤有机碳储量的影响[J].生态学报,2016,36(8):2123-2132.
    [24]葛佳丽,卜兆君,郑星星,等.三种泥炭藓对干旱及植物相互作用的形态响应[J].生态学杂志,2014,33(9):2363-2368.
    [25]彭凤姣,葛继稳,李艳元,等.神农架大九湖泥炭湿地CO2通量特征及其影响因子[J].生态环境学报,2017,26(3):453-460.
    [26]彭凤姣,葛继稳,李永福,等.神农架大九湖泥炭湿地水汽通量特征及生态意义[J].安全与环境工程,2017,24(5):1-8.
    [27]杜耘,蔡述明,王学雷,等.神农架大九湖亚高山湿地环境背景与生态恢复[J].长江流域资源与环境,2008,17(6):915-919.
    [28]刘玉莉.安吉毛竹林和太湖源雷竹林碳水耦合及水分利用效率研究[D].杭州:浙江农林大学,2014.
    [29]胡兆永.秦岭火地塘林区落叶松林碳水通量研究[D].西安:西北农林科技大学,2014.
    [30]米兆荣,陈立同,张振华,等.基于年降水、生长季降水和生长季蒸散的高寒草地水分利用效率[J].植物生态学报,2015,39(7):649-660.
    [31]董刚.中国东北松嫩草甸草原碳水通量及水分利用效率研究[D].长春:东北师范大学,2011.
    [32]闫巍,张宪洲,石培礼,等.青藏高原高寒草甸生态系统CO2通量及其水分利用效率特征[J].自然资源学报,2006,21(5):756-767.
    [33]周洁.北京大兴杨树人工林生态系统水分利用效率研究[D].北京:北京林业大学,2013.
    [34]张学仕.次生栎林蒸散量与水分利用效率研究[D].南京:南京林业大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700