用户名: 密码: 验证码:
连续降雨条件下典型泵站放江污染特征分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Sewage Discharge from Drainage Pumping Station on Receiving River Water Quality Under the Condition of Continuous Rainfall
  • 作者:康丽娟 ; 曹勇
  • 英文作者:KANG Li-juan;CAO Yong;Shanghai Academy of Environmental Science;
  • 关键词:泵站 ; 雨污混接 ; 景观河道 ; 污染特征 ; 上海市
  • 英文关键词:pumping station;;mixed discharge system of rain and sewage;;landscape river channel;;pollution characters;;Shanghai City
  • 中文刊名:SCAN
  • 英文刊名:Journal of Hydroecology
  • 机构:上海市环境科学研究院;
  • 出版日期:2019-03-15
  • 出版单位:水生态学杂志
  • 年:2019
  • 期:v.40
  • 基金:上海市环境保护局科研项目(沪环科2015-11,2018-18)
  • 语种:中文;
  • 页:SCAN201902004
  • 页数:7
  • CN:02
  • ISSN:42-1785/X
  • 分类号:22-28
摘要
鉴于上海市中心城区地表径流采用强排模式,由泵站排入受纳河道,常引起河道阶段性黑臭。为明确泵站放江污染对受纳河道的影响程度,选取中心城区典型泵站,在连续降雨期间监测评估了泵站放江水质、水量及其对受纳河道的影响程度。结果表明,在水量上,受连续降雨与泵站运行模式影响,降雨4.5 mm时的累积放江水量达61 410 m~3,放江水量达到服务区理论径流量的近7倍。在水质上,五日生化需氧量(BOD_5)、高锰酸盐指数(COD_(Mn))、氨氮(NH_3-N)和悬浮物(SS)事件平均浓度分别为43.2 mg/L、35.3 mg/L、33.4 mg/L和75.0 mg/L,细菌总数(total bacteria, TB)和大肠菌群(total coliforms, TC)事件平均浓度为6.8×10~6CFU/mL和5.7×10~5CFU/mL。对受纳河段而言,放江期间河段流速在3 cm/s左右,泵站放江污染物不能快速有效地扩散迁移,污水团在河道形成表观区域性黑臭,在排污口20 m范围内,主要污染物BOD_5、COD_(Mn)、NH_3-N和SS平均浓度与泵站放江水质接近,分别为35.0 mg/L、28.7 mg/L、28.1 mg/L和100.9 mg/L;TB和TC平均浓度为3.6×10~6CFU/mL和3.4×10~5CFU/mL。受河网流速影响,泵站排放口上下游样点受泵站放江影响小,相比而言,主要污染物变化趋势不显著。为有效降低排水系统雨天放江污染负荷,保障受纳河道水质改善效果,提出了挖掘截流设施潜力、推进雨污混接改造及加大河道生态修复力度等措施。
        Eutrophication and black, foul smelling water are prevalent problems found in the urban water environment. Previous studies have shown that pumping station discharge was the main source of black water in medium and small rivers in Shanghai. The effect of water discharged from municipal pumping stations on receiving streams was investigated in a case study. The quality and quantity of water discharged from a typical pumping station, under conditions of continuous rainfall, were monitored and its influence on the receiving stream was analyzed. Water samples were collected at four sites: Site A_0, 500 m above the pumping station outfall; Site A, in the pumping station forebay; Site A_1, 20 m below the outfall; Site A_2, 1000 m below the outfall. Water samples were divided into two groups, one for determining water quality parameters(BOD_5, COD_(Mn), NH_3-N and SS) and the other for determining microbiological indicators(TB and TC). Results show that the water volume discharged from the pumping station was seven times higher than the theoretical surface runoff. During the investigation, the rainfall was 4.5 mm, and the cumulative discharge amount reached 61 410 m~3. The concentration of BOD_5, COD_(Mn), NH_3-N, SS, TB and TC at the pumping station(Site A) were 43.2 mg/L mg/L, 35.3 mg/L, 33.4 mg/L, 75.0 mg/L, 6.8×10~6CFU/mL and 5.7×10~5CFU/mL, respectively. The flow velocity of the receiving river was approximately 3 cm/s, insufficient for pollutant dispersal, and the discharge led to formation of a black, foul smelling mass in the river. Within 20 meters of the sewage outfall(Site A_1), the average concentrations of the main pollutants BOD_5, COD_(Mn), NH_3-N, SS, TB and TC were very close to those at the pumping station(Site A), with values, respectively, of 35.0 mg/L, 28.7 mg/L, 28.1 mg/L, 100.9 mg/L, 3.6×10~6CFU/mL and 3.4×10~5CFU/mL. However, the pumping station discharge had little effect on water quality upstream(Site A_0) and downstream(Site A_2) of the pumping station. We recommend three actions to decrease pollution loading by pump station discharges and protect water quality in the receiving river:(1) Prevent and control illicit connections to the drainage system;(2) develop intercept facilities and a combined sewer system for conveyance of storm runoff and sewage; and(3) increase ecological restoration of river channels.
引文
汉京超, 2013. 城市雨水径流污染特征及排水系统模似优化研究[D]. 上海:复旦大学.
    黄慧, 王旭, 金乐辰, 等,2013. 浅谈浦东新区排水系统中雨污混流现状及对策建议[J]. 城市建筑, (16):124,138.
    巨天珍, 林郁, 贾丽, 2009. 黑臭水体与城市空气微生物污染[J]. 城市问题, (5):91-95.
    孔繁翔, 2000. 环境生物学[M]. 北京: 高等教育出版社.
    李田, 钱静, 沈军, 等, 2014. 合肥市排水系统雨天出流水质监测与分析[J]. 给水排水, 40(2): 41-44.
    刘辛伟, 吕晓洁, 2011. 细菌总数测定在水生态环境中的应用探讨[J]. 环境保护与循环经济, 10: 46-47.
    上海市环境保护局, 1999-2012. 上海市环境质量报告书[R].
    上海市徐汇区环境监测站, 2012-2014. 上海市徐汇区环境质量报告书[R].
    施雪萍, 2012. 上海市闸北区城市河道水质演变规律和新出现的问题[J]. 环境科学与管理, 37(3): 136-139.
    孙从军, 康丽娟, 赵振, 等, 2011. 典型高混接率分流制排水泵站雨天放江污染特征研究[J]. 环境工程学报, 5(12):2687-2692.
    王建军, 李田, 侯娟, 等, 2014. 路面径流的大肠菌群污染及其雨水花园处理[J]. 环境工程学报, 8(12):5221-5225.
    温灼如, 张瑛玉, 洪陵成, 等, 1987. 苏州水网黑臭警报方案的研究[J]. 环境科学, 8(4):2-7.
    吴贤海, 康丽娟, 孙从军,2012. 分流制泵站旱天放江对受纳河道水质的影响[J]. 中国给水排水, 28(23):42-45,50.
    肖群, 2007. 上海市河道水质现状及影响因素分析[J]. 上海水务, 23(4): 43-46.
    徐祖信, 汪玲玲, 尹海龙, 2015. 基于水质特征因子和Monte Carlo理论的雨水管网混接诊断方法[J]. 同济大学学报(自然科学版), 43(11):1715-1721,1727.
    杨文新, 樊景凤, 周君, 等, 2013. 大连沿海排污口及邻近水域细菌动态分析[J]. 海洋与湖沼, 44(5):1249-1256.
    叶建锋, 张玉, 2014. 中心城区泵站旱天放江特征及消减潜力分析[J]. 净水技术, 33(6):33-38.
    张崇淼, 王晓昌, 周进宏, 等, 2012. 城市地表水中肠道病原微生物与粪便污染指示菌的关系研究[J]. 环境科学学报, 32(11):2789-2794.
    张广强, 张明旭, 韩中豪, 等, 2009. 苏州河近20年水质状况研究[J]. 中国环境监测, 25(2): 39-44.
    Gasperi J, Gromaire M C, Kafi M, et al, 2010. Contributions of wastewater, runoff and sewer deposit erosion to wet weather pollutant loads in combined sewer systems[J]. Water Res, 44:5875-5886.
    Gromaire M C, Gamaud S, 2001. Contribution of different sources to the pollution of wet weather flows in combined sewers[J]. Water Res, 35(2):521-533.
    James E S, Joyce M P, 2004. Assessment and management of watershed microbial contaminants[J]. Critical Reviews in Environmental Science and Technology, 34(2):109-139.
    Ministry of the Environment, 2011. Water quality criteria for bathing beaches[M]. Tokyo: Ministry of the Environment.
    Young-Sik Ham, Hiromi Kobori, Masahisa Takasago, 2009. Effects of combined sewer overflow and stormwater on indicator bacteria concentrations in the Tama River due to the high population density of Tokyo Metropolitan area[J]. Environ Monit Assess, 152:459-468.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700