用户名: 密码: 验证码:
局部电弧丝状放电控制激波/边界层干扰的数值研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Localized Arc Filament Plasma Actuator for Shock Wave/Boundary Layer Interaction Control
  • 作者:王浩 ; 程邦勤 ; 纪振伟 ; 胡伟波
  • 英文作者:WANG Hao;CHENG Bang-qin;JI Zhen-wei;HU Wei-bo;Aeronautics and Astronautics Engineering College,Air Force Engineering University;
  • 关键词:激波/边界层干扰 ; 流场分离 ; 局部电弧丝状放电激励 ; 热阻塞 ; 数值仿真
  • 英文关键词:Shock wave/boundary layer interaction;;Flow separation;;Localized arc filament plasma actuator;;Thermal choking;;Numerical simulation
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:空军工程大学航空航天工程学院;
  • 出版日期:2017-08-14 13:25
  • 出版单位:推进技术
  • 年:2017
  • 期:v.38;No.245
  • 语种:中文;
  • 页:TJJS201711004
  • 页数:8
  • CN:11
  • ISSN:11-1813/V
  • 分类号:36-43
摘要
采用数值模拟的方法研究局部电弧丝状放电激励对激波/边界层干扰引起的气流分离的控制效果和机理。研究发现在干扰区上游和干扰区内进行电弧放电能够有效控制边界层的分离,且控制效果随着能量输入增大而增强,最大可使分离区减小40.6%,而在干扰区下游作用时对激波/边界层干扰基本没有影响。结合热阻塞效应,可得出电弧放电的作用机理是其产生的焦耳热在流场中造成局部流场阻塞,形成等离子体虚拟型面,在流场中诱导出微弱的斜激波和旋向相反的漩涡,增大了边界层内流体的动量,使其抵抗分离的能力增强,从而抑制了气流的分离。
        The control effects and mechanism of localized arc filament plasma actuator for shock wave/boundary layer interaction control were numerically investigated. Results show that the arc discharge in or upstream the interaction region can effectively decrease separation and the maximum reduction of separation region is 40.6%,while arc discharge downstream the interaction region has no effects. Besides,the efficiency of control improves as the input energy increases. Based on the thermal choking effect,the control mechanism of arc discharge can be deduced that the Joule heat induced by discharge causes local thermal choke in the flow-field,which can be regarded as plasma virtual surface. The virtual surface induces an oblique shock and counter-rotating vortices in the flow-field. Thus the momentum of boundary layer and the resistance to separation increased,and the separation is depressed.
引文
[1]Oorebeek J M,Nolan W R,Babinsky H.Comparison of Bleed and Micro-Vortex Generator Effects on Supersonic Boundary Layers[R].AIAA 2012-0045.
    [2]宗豪华,宋慧敏,梁华.纳秒脉冲等离子体合成射流特性实验研究[J].推进技术,2015,36(10):1474-1478.(ZONG Hao-hua,SONG Hui-min,LIANG Hua.Experimental Study on Characteristic ofNanosecond Pulsed Plasma Synthetic Jet[J].Journal of Propulsion Technology,2015,36(10):1474-1478.)
    [3]苏纬仪,张新宇,张堃元.洛伦兹力控制高超声速进气道边界层分离的数值模拟[J].推进技术,2011,32(1):36-41.(SU Wei-yi,ZHANG Xin-yu,ZHANG Kun-yuan.Numerical Investigation of Lorentz Force Control on Hypersonic Inlet Boundary Layer Separation[J].Journal of Propulsion Technology,2011,32(1):36-41.)
    [4]Webb N,Clifford C,Samimy M.Preliminary Results on Shock Wave/Boundary Layer Interaction Control Using Localized Arc Filament Plasma Actuators[R].AIAA2011-3426.
    [5]Webb N,Clifford C,Samimy M.An Investigation of the Control Mechanism of Plasma Actuators in Shock WaveBoundary Layer Interaction[R].AIAA 2013-0402.
    [6]Webb N,Clifford C,Samimy M.Control of Oblique Shock Wave/Boundary Layer Interactions Using Plasma Actuators[J].Experiment Fluids,2013,54:1545.
    [7]Yan H,Gaitonde D,Shang J.Investigation of Localized Arc Filament Plasma Actuator in Supersonic Boundary Layer[R].AIAA 2007-1234.
    [8]王健,李应红,程邦勤.等离子体气动激励控制激波的机理研究[J].物理学报,2009,58(8):5513-5519.
    [9]Schulein E,Krogmann P,Stanewsky E.Documentation of Two-Dimensional Impinging Shock/Turbulent Boundary Layer Interaction Flow[R].DLR IB 223-96 A 49,1996.
    [10]Schulein E.Skin-Friction and Heat Flux Measurements in Shock/Boundary Layer Interaction Flows[J].AIAA Journal,2006,44(8):1732-1741.
    [11]Maise G,Mc Donald H.Mixing Length and Kinematic Eddy Viscosity in a Compressible Boundary Layer[J].AIAA Journal,1968,6(1):73-80.
    [12]蒋旭旭.激波诱导边界层分离的研究[D].哈尔滨:哈尔滨工程大学,2006.
    [13]汪剑平,翁甲辉.阴极电子学与气体放电原理[M].北京:清华大学出版社,1980.
    [14]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [15]秦曾衍,左公宁,王永荣.2000高压强脉冲放电及其应用[M].北京:北京工业大学出版社,2000.
    [16]李应红,吴云,梁华.提高抑制流动分离能力的等离子体冲击流动控制原理[J].科学通报,2010,55(31):3060-3068.
    [17]Popov N A.Investigation of the Mechanism for Rapid Heating of Nitrogen and Air in Gas Discharges[J].Plasma Physics Reports,2001,(10):886-896.
    [18]Babinsky H,Harvey J K.Shock Wave-Boundary Layer Interaction[M].Cambridge:Cambridge University Press,2011.
    [19]Fukuda M K,Hingst W G,Reshotko E.Control of Shock Wave-Boundary Layer Interactions by Bleed in Supersonic Mixed Compression Inlets[R].NASA CR-2595,1999.
    [20]Curran E T,Murthy S N B.Scramjet Propulsion[M].Reston:AIAA,2000.
    [21]过增元,赵文华.电弧和热等离子体[M].北京:科学出版社,1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700