用户名: 密码: 验证码:
新型超高强Al-Zn-Mg-Cu合金热压缩变形行为及微观组织特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hot compressive deformation behavior and microstructure characteristics of new ultra strength Al-Zn-Mg-Cu alloy
  • 作者:王宇 ; 熊柏青 ; 李志辉 ; 温凯 ; 黄树晖 ; 李锡武 ; 张永安
  • 英文作者:WANG Yu;XIONG Bai-qing;LI Zhi-hui;WEN Kai;HUANG Shu-hui;LI Xi-wu;ZHANG Yong-an;State Key Laboratory of Nonferrous Metals and Processes,General Research Institute for Nonferrous Metals;
  • 关键词:热压缩 ; 流变应力 ; 显微组织 ; 本构方程 ; Al-Zn-Mg-Cu-Zr-Sc合金
  • 英文关键词:hot compression;;flow stress;;microstructure;;constitutive equation;;Al-Zn-Mg-Cu-Zr-Sc alloy
  • 中文刊名:CLGC
  • 英文刊名:Journal of Materials Engineering
  • 机构:北京有色金属研究总院有色金属材料制备加工国家重点实验室;
  • 出版日期:2019-03-05 11:55
  • 出版单位:材料工程
  • 年:2019
  • 期:v.47;No.429
  • 基金:国家重点研发计划(2016YFB0300803);; 国家重点基础研究发展计划(973计划)(2012CB723900)
  • 语种:中文;
  • 页:CLGC201902014
  • 页数:8
  • CN:02
  • ISSN:11-1800/TB
  • 分类号:103-110
摘要
利用Gleeble-1500热模拟试验机对新型超高强Al-Zn-Mg-Cu-Zr-Sc合金进行高温热压缩实验,研究该合金在变形温度370~460℃、应变速率0.001~10s~(-1)条件下的流变应力以及变形过程中的显微组织。结果表明:流变应力在变形初期随着应变的增加迅速增大,出现峰值应力后逐渐下降并达到稳态,流变应力随着应变速率的增大而增大,随着变形温度的升高而下降;流变应力可以采用双曲正弦形式的关系来描述,通过线性拟合计算出该材料的形变激活能等参数,获得流变应力的本构方程。随着变形温度升高和应变速率降低,原始晶粒变形程度显著增加,再结晶分数明显上升。
        The hot compression test of the new ultra strength Al-Zn-Mg-Cu-Zr-Sc alloy at high temperature was carried out by using the Gleeble-1500 thermal simulator. The flow stress and microstructure evolution during the deformation process of the new alloy were investigated at the deformation temperature 370-460℃, the strain rate 0.001-10 s~(-1). The results show that the flow stress in the early deformation stage increases with the increase of the strain rapidly, and then the peak stress decreases gradually and reaches a steady state. The flow stress increases with increasing strain rate, and decreases with the increase of deformation temperature. The flow stress can be described with hyperbolic sine relationship, and material parameters such as activation energy can be calculated by linear fitting, thus the constitutive equation of flow stress can be presented finally. With the increase of the deformation temperature and the decrease of the strain rate, the deformation degree of the original grain increases significantly, and the recrystallization fraction increases obviously.
引文
[1] HEINZ A, HASZLER A, KEIDEL C, et al. Recent development in aluminium alloys for aerospace applications[J]. Materials Science and Engineering:A, 2000, 280(1): 102-107.
    [2] WARNER T. Recently-developed aluminium solutions for aerospace applications[J]. Materials Science Forum, 2006, 519/521: 1271-1278.
    [3] LIU J. Advanced aluminium and hybrid aerostructures for future aircraft[J]. Materials Science Forum, 2006, 519/521: 1233-1238.
    [4] DURSUN T, SOUTIS C. Recent developments in advanced aircraft aluminium alloys[J]. Materials & Design, 2014, 56: 862-871.
    [5] MILMAN Y V, SIRKO A I, LOTSKO D V, et al. Microstructure and mechanical properties of cast and wrought Al-Zn-Mg-Cu alloys modified with Zr and Sc[J]. Materials Science Forum, 2002, 396/402:1217-1222.
    [6] MUKHOPADHYAY A K, KUMAR A, RAVEENDRA S, et al. Development of grain structure during superplastic deformation of an Al-Zn-Mg-Cu-Zr alloy containing Sc[J]. Scripta Materialia, 2011, 64(5): 386-389.
    [7] MENG Y, ZHAO Z H, CUI J Z. Effect of minor Zr and Sc on microstructures and mechanical properties of Al-Mg-Si-Cu-Cr-V alloys[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(7): 1882-1889.
    [8] LIU J, YAO P, ZHAO N Q, et al. Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al-Zn-Mg-Cu alloys[J]. Journal of Alloys and Compounds, 2016, 657: 717-725.
    [9] YIN Z M, PAN Q L, ZHANG Y H, et al. Effect of minor Sc and Zr on the microstructure and mechanical properties of Al-Mg based alloys[J]. Materials Science and Engineering:A, 2000, 280(1): 151-155.
    [10] R?YSET J, RYUM N. Scandium in aluminium alloys[J]. International Materials Reviews, 2005, 50(1): 19-44.
    [11] 陈修梵,彭小燕,张慧颖,等. 7050铝合金热压缩变形的流变行为及微观组织演变[J]. 特种铸造及有色合金, 2015, 35(12): 1237-1242. CHEN X F, PENG X Y, ZHANG H Y, et al. Characterization of flow behavior and microstructural evolution of 7050 aluminum alloy during hot compression process[J]. Special Casting & Nonferrous Alloys, 2015, 35(12): 1237-1242.
    [12] 隆平,潘清林,周坚,等. 7B50铝合金热压缩变形行为与预测[J]. 轻金属, 2014(1): 51-54. LONG P, PAN Q L, ZHOU J, et al. Hot compressive deformation behavior and flow stress prediction of 7B50 aluminum alloy[J]. Light Metals, 2014(1): 51-54.
    [13] KAIBYSHEV R, SITDIKOV O, GOLOBORODKO A, et al. Grain refinement in as-cast 7475 aluminum alloy under hot deformation[J]. Materials Science and Engineering:A, 2003, 344(1/2):348-356.
    [14] 徐雪峰,肖尧,刘琪,等. LF2M 铝合金薄壁管材的热压缩变形行为及热加工图[J]. 材料热处理学报, 2018, 39(2): 145-151. XU X F, XIAO Y, LIU Q, et al. Hot compression deformation behavior and processing map of LF2M aluminum alloy thin-walled tube[J]. Transactions of Materials and Heat Treatment, 2018, 39(2): 145-151.
    [15] 寇琳媛,金能萍,张辉,等. 7150铝合金高温热压缩变形流变应力行为[J]. 中国有色金属学报, 2010, 20(1): 43-48. KOU L Y, JIN N P, ZHANG H, et al. Flow stress behavior of 7150 aluminum alloy during hot compression deformation at elevated temperature[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(1): 43-48.
    [16] 李成侣,潘清林,刘晓艳,等. 2124 铝合金的热压缩变形和加工图[J]. 材料工程, 2010(4): 10-14. LI C L, PAN Q L, LIU X Y, et al. Hot compression deformation and processing maps of 2124 aluminum alloy[J]. Journal of Materials Engineering, 2010(4): 10-14.
    [17] 王忠军,付学丹,朱晶,等.ZK60和ZK60-1.0Er镁合金热压缩变形和加工图[J]. 材料工程, 2017, 45(3): 102-111. WANG Z J, FU X D, ZHU J, et al. Hot compressive deformation and processing maps of ZK60 and ZK60-1.0Er magnesium alloy[J]. Journal of Materials Engineering, 2017, 45(3): 102-111.
    [18] 易幼平,杨积慧,蔺永诚. 7050 铝合金热压缩变形的流变应力本构方程[J]. 材料工程, 2007(4): 20-22. YI Y P, YANG J H, LIN Y C. Flow stress constitutive equation of 7050 aluminum alloy during hot compression[J]. Journal of Materials Engineering, 2007(4): 20-22.
    [19] 臧金鑫,郑林斌,张坤,等. 新型超高强Al-Zn-Mg-Cu铝合金热压缩变形的流变应力行为[J]. 航空材料学报, 2011, 31(3): 35-39. ZANG J X, ZHENG L B, ZHANG K, et al. Flow stress behavior of a new high strength Al-Zn-Mg-Cu alloy during hot compression deformation[J]. Journal of Aeronautical Materials, 2011, 31(3): 35-39.
    [20] 谢金乐,刘允中,吴汇江,等. 半固态7050铝合金热压缩变形行为[J]. 特种铸造及有色合金, 2011, 31(9): 816-819. XIE J L, LIU Y Z, WU H J, et al. Hot compression behavior of semi-solid 7050 aluminum alloy[J]. Special Casting & Nonferrous Alloys, 2011, 31(9): 816-819.
    [21] POIRIER J P. 晶体的高温塑性变形[M].大连:大连理工大学出版社, 1989. POIRIER J P. High temperature plastic deformation of crystal[M]. Dalian: Dalian University of Technology Press, 1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700