用户名: 密码: 验证码:
快速空间测角系统中偏振像差的分析与研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis and research of polarization aberration in rapid space angle measuring system
  • 作者:李春艳 ; 陆卫国 ; 乔琳
  • 英文作者:Li Chun-Yan;Lu Wei-Guo;Qiao Lin;Department of Optoelectronic Technology, School of Electronics Engineering, Xi’an University of Posts and Telecommunications;Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences;
  • 关键词:偏振光 ; 方位角测量 ; 偏振像差 ; Glan-Taylor棱镜
  • 英文关键词:polarized light;;azimuth measurement;;polarization aberration;;Glan-Taylor prism
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:西安邮电大学电子工程学院光电子技术系;中国科学院西安光学精密机械研究所;
  • 出版日期:2018-01-10 11:09
  • 出版单位:物理学报
  • 年:2018
  • 期:v.67
  • 基金:陕西省自然科学基金(批准号:2016JQ1026);; 陕西省教育厅专项科研计划(批准号:15JK1659);; 国家自然科学基金(批准号:11604263)资助的课题~~
  • 语种:中文;
  • 页:WLXB201803008
  • 页数:8
  • CN:03
  • ISSN:11-1958/O4
  • 分类号:75-82
摘要
快速空间测角系统需要在一定的平移范围内均能实现测量功能,这就要求光束在接收单元具有一定的覆盖面积.受器件尺寸所限,选择对入射光束进行扩束,然而非正入射光经过系统会产生偏振态变化,存在偏振像差,引起测量误差.本文通过采用偏振光线追迹的方法,结合电磁场的边界条件,对快速空间测角系统中一定方位及入射角范围内的光束通过偏振棱镜后出射光束的偏振态变化与分布进行了理论研究及仿真分析;并通过搭建实验平台,利用平移接收单元来模拟不同的入射方位及角度变化.根据实验值与仿真结果的对比分析,得出在方位角为0o时,测量误差较小,在方位角为90o时,测量误差最大,且随平移距离(即入射角)的增大,测角误差增大.验证了偏振像差的存在对系统测角带来的影响及理论分析的正确性,并提出了改进措施.所得研o究结果对优化系统结构并进一步提高系统性能具有一定的指导意义.
        The precise angle measurement and transmission technology have been widely used in the precision measurement,aerospace, military, biomedicine and other devices, which are based on the polarized light and magneto-optical modulation. This method has the characteristics of no rigid connection required, long distance transmission, high precision, etc.However, the azimuth information measurement method needs the assistance of complex servo tracking system according to the orthogonal extinction principle of polarization prism, meanwhile, the measurement time is longer, which reduces reliability and reaction sensitivity of the system. In order to improve the measurement accuracy and fast response capability of the system, a fast space goniometry method is proposed through the Wollaston prism polarizing beam splitter, with which the azimuth is directly calculated according to the two light intensities. The measurement time can be shortened, and the accuracy is improved by the use of magneto-optical modulation technology. The rapid space angle measuring system needs to realize the measurement function in a certain translation range, which requires the beam to have a certain coverage area in the receiving unit. However, the system is limited by size and volume of the device; we can only choose to expand the incident beam. Therefore, when the beam is incident onto the receiving unit, some incident angle and azimuth, that is, non-vertical incidence will be produced. However, the polarization of the non-vertically incident light passing through the system will change and polarization aberration exists, which will lead to measurement error. In this paper, the beam passes through the polarizing prism in a certain range of azimuths and incident angles,and the polarized light tracing method and the boundary condition of the electromagnetic field are used to study and simulate the polarization change and distribution of the outgoing beam. The changes of different incident azimuths and angles can be simulated through the translation of receiving unit, and the azimuths can be measured indirectly by using self-collimation theodolite and right angle prism. By comparing the measured azimuths under the translational and centering conditions, the influence of polarization aberration on the angle measuring system and the correctness of the theoretical analysis are verified. It is concluded that when the azimuth angle is 0o, the measurement error is small;when the azimuth is 90o, the measurement error is largest, meanwhile the measurement error will increase with the translation distance becoming longer(i.e., the incident angle). According to the comparison between the experimental data and the simulation results, the existing problems are pointed out, and the corresponding improvement measures are proposed. The results of this work have some significance in guiding the optimization of the system structure, and the further improvement inthe performance of the system.
引文
[1]Dong X N,Gao L M,Shen X J,Chen L Y 2001 Acta Phot.Sin.30 1389(in Chinese)[董晓娜,高立民,申小军,陈良益2001光子学报30 1389]
    [2]Shen X J,Ma C W,Dong X N 2001 Acta Phot.Sin.30892(in Chinese)[申小军,马彩文,董晓娜2001光子学报30 892]
    [3]Wu Y M 2009 Ph.D.Dissertation(Xi’an:Xi’an Institute of Optics and Precision Mechanics)(in Chinese)[吴易明2009博士学位论文(西安:西安光学精密机械研究所)]
    [4]Wu Y M,Gao L M,Chen L Y 2008 Infrar.Laser Eng.37 525(in Chinese)[吴易明,高立民,陈良益2008红外与激光工程37 525]
    [5]Yang Z H,Huang X X,Zhou Z F,Zhang Z L 2012 Acta Opt.Sin.32 1212006(in Chinese)[杨志勇,黄先祥,周召发,张志利2012光学学报32 1212006]
    [6]Yang Z H,Cao W,Wu F C 2015 Acta Opt.Sin.25s112003(in Chinese)[杨志勇,蔡伟,伍樊成2015光学学报25 s112003]
    [7]Yang Z Y,Huang X X,Zhou Z F,Zhang Z L 2012 Acta Opt.Sin.32 0112006(in Chinese)[杨志勇,黄先祥,周召发,张志利2012光学学报32 0112006]
    [8]Yang Z Y,Huang X X,Zhou Z F,Zhang Z L 2012 Acta Opt.Sin.32 1012001(in Chinese)[杨志勇,黄先祥,周召发,张志利2012光学学报32 1012001]
    [9]Yang Z Y,Zhou Z F,Zhang Z L 2012 Opt.Precis.Eng.20 692(in Chinese)[杨志勇,周召发,张志利2012光学20 692]
    [10]Shen X,Liang Z C 2014 Optron.Lasers 25 1535(in Chinese)[沈骁,梁忠诚2014光电子25 1535]
    [11]Yang Z Y,Huang X X,Zhou Z F,Zhang Z L 2011 Acta Opt.Sin.31 1112008(in Chinese)[杨志勇,黄先祥,周召发,张志利2011光学学报31 1112008]
    [12]Lu W G,Wu Y M,Gao L M,Xiao M S,Wang H X 2013Opt.Precis.Eng.21 539(in Chinese)[陆卫国,吴易明,高立民,肖茂森,王海霞2013光学·精密工程21 539]
    [13]Lu W G,Wu Y M,Gao L M,Li C Y,Xiao M S 2014Infrar.Laser Eng.43 2198(in Chinese)[陆卫国,吴易明,高立民,李春艳,肖茂森2014红外与激光工程43 2198]
    [14]Lu W G 2013 Ph.D.Dissertation(Xi’an:Xi’an Institute of Optics and Precision Mechanics)(in Chinese)[陆卫国2013博士学位论文(西安:西安光学精密机械研究所)]
    [15]Yang Y F,Yan C X,Hu C H,Wu C J 2016 Acta Phot.Sin.36 1106003(in Chinese)[杨宇飞,颜昌翔,胡春晖,吴从均2016光子学报36 1106003]
    [16]Li Y H,Hao X,Shi Z Y,Shuai S J,Wang L 2015 Acta Phys.Sin.64 154214(in Chinese)[李旸晖,郝翔,史召邑,帅少杰,王乐2015物理学报64 154214]
    [17]Yun G,Crabtree K,Chipman R A 2011 Opt.Lett.364062
    [18]Xu J,Liu F,Liu J T,Wang J Y,Han P L,Zhou Z H,Shao X P 2016 Acta Phys.Sin.65 134201(in Chinese)[许洁,刘飞,刘杰涛,王娇阳,韩平丽,周淙浩,邵晓鹏2016物理学报65 134201]
    [19]Lam W S T,Chipman R 2015 Appl.Opt.54 3236
    [20]Wu H Y,Zhang C M,Zhao B C 2009 Acta Phys.Sin.58 930(in Chinese)[吴海英,张淳民,赵葆常2009物理学报58 930]
    [21]Yun G,Crabtree K,Chipman R A 2011 Appl.Opt.502855
    [22]Zhang M R,He Z Q,Wang T,Tian J S 2017 Acta Phys.Sin.66 084202(in Chinese)[张敏睿,贺正权,汪韬,田进寿2017物理学报66 084202]
    [23]Yun G,Mc Clain S C,Chipman R A 2011 Appl.Opt.502866
    [24]Wu H Y,Zhang C M,Zhao B C 2008 Acta Phys.Sin.57 3499(in Chinese)[吴海英,张淳民,赵葆常2008物理学报57 3499]
    [25]Shen W M,Jin Y X,Shao Z X 2003 Acta Phys.Sin.523049(in Chinese)[沈为民,金永兴,邵中兴2003物理学报52 3049]
    [26]Zhang C M,Liu N,Wu F Q 2010 Acta Phys.Sin.59949(in Chinese)[张淳民,刘宁,吴福全2010物理学报59949]
    [27]Wu H Y,Zhang C M,Zhao B C,Li Y C 2009 Acta Phys.Sin.58 1642(in Chinese)[吴海英,张淳民,赵葆常,李英才2009物理学报58 1642]
    [28]Liu C,Cen Z F,Li X T,Xu W C,Shang H B,Neng F,Chen L 2012 Acta Phys.Sin.61 134201(in Chinese)[刘超,岑兆丰,李晓彤,许伟才,尚红波,能芬,陈立2012物理学报61 134201]
    [29]Mu Y K,Zhang C M,Zhao B C 2009 Acta Phys.Sin.58 3877(in Chinese)[穆延魁,张淳民,赵葆常2009物理学报58 3877]
    [30]Xiao M S,Li C Y,Wu Y M,Lu W G,Wang H X 2015Infrar.Laser Eng.44 611(in Chinese)[肖茂森,李春艳,吴易明,陆卫国,王海霞2015红外与激光工程44 611]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700