用户名: 密码: 验证码:
基于声发射试验的红层砂岩损伤演化特性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Damage Evolution Analysis of Red Sandstone Based on Acoustic Emission Test
  • 作者:王腾飞 ; 李远耀 ; 徐勇 ; 郭子正 ; 杨钦富
  • 英文作者:Wang Tengfei;Li Yuanyao;Xu Yong;Guo Zizheng;Yang Qinfu;Institute of Geological Survey,China University of Geosciences (Wuhan);Wuhan Center of Geological Survey,China Geological Survey;Faculty of Engineering,China University of Geosciences (Wuhan);Guizhou Transportation Planning and Design Research Institute Company Limited;
  • 关键词:红层砂岩 ; 单轴压缩 ; 声发射试验 ; 损伤演化 ; 分形
  • 英文关键词:red sandstone;;uniaxial compression;;acoustic emission test;;damage evolution;;fractal
  • 中文刊名:DZKQ
  • 英文刊名:Geological Science and Technology Information
  • 机构:中国地质大学(武汉)地质调查研究院;中国地质调查局武汉地质调查中心;中国地质大学(武汉)工程学院;贵州省交通规划勘察设计研究院股份有限公司;
  • 出版日期:2018-10-22 11:30
  • 出版单位:地质科技情报
  • 年:2019
  • 期:v.38;No.187
  • 基金:国家自然科学基金项目(41572256);; 中国地质调查局地质调查项目(2016290089)
  • 语种:中文;
  • 页:DZKQ201904026
  • 页数:8
  • CN:04
  • ISSN:42-1240/P
  • 分类号:253-260
摘要
红层砂岩在我国广泛分布,其特殊的工程地质特性对工程建设具有重要影响。对取自重庆万州龙驹坝地区的侏罗系红层砂岩样品进行了声发射试验,分析了其在单轴压缩条件下的损伤演化特性,得到了样品在单轴压缩条件下的应力-应变特征曲线,以及声发射参数在红层砂岩破裂过程中的响应特征。试验结果表明:样品在单轴受压条件下的损伤过程分为内部压密、弹性变形、塑性变形、破裂和残余变形5个阶段,各阶段声发射参数具有显著差异;不同类型样品的损伤量曲线与应力曲线具有同步性,且在弹性-塑性临界点开始出现损伤量的跳跃性增长;对AE振铃计数率参数的回归分析表明,样品在损伤破裂过程中的声发射参数序列存在分形特征,关联维数D可以较好地表征岩石内部损伤的发展规律。试验成果可为红层岩体失稳破坏的监测预警及风险评价提供数据支撑。
        The red sandstone is widely distributed in China, and its special engineering geological characteristics have important influence on engineering construction. The Jurassic red sandstone samples from the Longjuba area of Wanzhou, Chongqing were selected for the acoustic emission test, and their damage evolution process under uniaxial compression was analyzed. The stress-strain characteristic curves of the samples under uniaxial compression and the response characteristics of the acoustic emission parameters during the rupture of the red beds are obtained. The results show that the damage process of the samples under the uniaxial compression condition is divided into five stages: compaction, elastic deformation, plastic deformation, rupture and peak residual deformation. The acoustic emission parameters of each stage are obviously different. The damage curves of different types of samples are in consistence with the stress curve, and the jump amount of damage starts to appear at the critical point of elasticity-plasticity. Regression analysis of AE ringing counting rate parameters shows that the acoustic emission parameters of the samples have fractal characteristics in the process of damage and rupture; the correlation dimension D can characterize the development of internal damage in rock. The results of the experiment can provide data support for the monitoring, early warning and risk assessment of the failure of the red bed rock mass.
引文
[1] 郭永春,谢强,文江泉.我国红层分布特征及主要工程地质问题[J].水文地质工程地质,2007(6):67-71.
    [2] 杨永杰,王德超,郭明福,等.基于三轴压缩声发射试验的岩石损伤特征研究[J].岩石力学与工程学报,2014,33(1):98-104.
    [3] 梁天成,葛洪魁,郭志伟,等.利用声发射和波速变化判定岩石损伤状态[J].中国地震,2012,28(2):154-166.
    [4] Blake W.Microseismic applications for mining:A practical guide[R].US:Bureau of Mines,1982
    [5] 吴永胜,余贤斌.单轴压缩条件下岩石声发射特性的实验研究[J].金属矿山,2008,10:25-28.
    [6] 张国凯,李海波,夏祥,等.单轴加载条件下花岗岩声发射及波传播特性研究[J].岩石力学与工程学报,2017,36(5):1133-1144.
    [7] Yang S Q,Jing H W,Wang S Y.Experimental investigation on the strength,deformability,failure behavior and acoustic emission locations of red sandstone under triaxial compression[J].Rock Mechanics and Rock Engineering,2012,45(4):583-606.
    [8] Moore D E,Lockner D A.The role of microcracking in shear-fracture propagation in granite[J].Journal of Structural Geology,1995,17(1):95-114.
    [9] 郭清露,荣冠,姚孟迪,等.大理岩热损伤声发射力学特性试验研究[J].岩石力学与工程学报,2015,34(12):2388-2400.
    [10] Masuda K.Effects of water on rock strength in a brittle regime[J].Journal of Structural Geology,2001,23(11):1653-1657.
    [11] 王渭明.岩体力学[M].徐州:中国矿业大学出版社,2010:38-43.
    [12] Rudajev V,Vilhelm J,Lokaj?ek T.Laboratory studies of acoustic emission prior to uniaxial compressive rock failure[J].International Journal of Rock Mechanics and Mining Sciences,2000,37(4):699-704.
    [13] 李庶林,尹贤刚,王泳嘉,等.单轴受压岩石破坏全过程声发射特征研究[J].岩石力学与工程学报,2004,23(15):2499-2503.
    [14] Holcomb D J.General theory of the Kaiser effect[J].Int.J.Rock Mech.Min.Sci.& Geomech.Abstr.,1993,30(7):929-935.
    [15] Dai S T,Labuz J F.Damage and failure analysis of brittle materials by acoustic emission[J].Journal of Materials in Civil Engineering,1997,9(4):200-205.
    [16] Hudson J A,Fairhurst C.Tensile strength,Weibull’s theory and a general statistical approach to rock failure[C]//Anon.Proc.Civil Engineering Materials Conference.Southampton:[s.n.],1969:901-904.
    [17] Kusunos K,Lei Xinglin,Nishizawa O,et al.Effect of grain size on fractal structure of acoustic e-mission hypocenter distribution in granitic rock[J].Physics of the Earth and Planetary Interiors,1991,67(1/2):194-199.
    [18] Ganne P,Vervoort A,Wevers M.Quantification of pre-peak brittle damage:Correlation between acoustic emission and observed micro-fracturing[J].International Journal of Rock Mechanics and Mining Sciences,2007,44(4):720-729.
    [19] 吴贤振,刘祥鑫,梁正召,等.不同岩石破裂全过程的声发射序列分形特征试验研究[J].岩土力学,2012,33(12):3561-3569.
    [20] 李元辉,刘建坡,赵兴东,等.岩石破裂过程中的声发射b值及分形特征研究[J].岩土力学,2009,30(9):2559-2563.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700