用户名: 密码: 验证码:
基于二氧化锰/石墨烯复合材料的制备方法及在超级电容器上的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation methods and progress of manganese dioxide/graphene based composites in supercapacitors
  • 作者:李伟 ; 侯朝霞 ; 李建君 ; 薄大明
  • 英文作者:LI Wei;HOU Zhaoxia;LI Jianjun;BO Daming;Liaoning Province Key Laboratory of New Functional Materials and Chemical Technology, School of Mechanical Engineering,Shenyang University;
  • 关键词:石墨烯 ; 二氧化锰 ; 复合材料 ; 超级电容器
  • 英文关键词:graphene;;manganese dioxide;;composites;;supercapacitors
  • 中文刊名:CNKX
  • 英文刊名:Energy Storage Science and Technology
  • 机构:沈阳大学机械工程学院辽宁省新型功能材料与化学工艺重点实验室;
  • 出版日期:2019-03-01
  • 出版单位:储能科学与技术
  • 年:2019
  • 期:v.8;No.40
  • 基金:国家自然科学基金(51472166);; 辽宁省“百千万人才工程”资助项目
  • 语种:中文;
  • 页:CNKX201902003
  • 页数:11
  • CN:02
  • ISSN:10-1076/TK
  • 分类号:30-40
摘要
综述了基于MnO_2/石墨烯的二元、三元复合材料在超级电容器方面的最新研究进展。由于范德华力造成的堆叠,石墨烯实际比电容并不高。MnO_2理论比电容高达1370 F/g,但因其赝电容受MnO_2片层厚度的限制,实际比电容远小于理论值。将石墨烯和MnO_2复合,MnO_2纳米结构锚定在石墨烯纳米片之间充当间隔物,可以有效抑制石墨烯的堆叠,增强界面电荷转移,借助二者的协同效应有望实现高比电容、高电导率和良好的循环稳定性。介绍了MnO_2/石墨烯复合材料的制备方法及电化学性能。对比分析了MnO_2/石墨烯三元复合材料的电化学性能,由于金属氧化物或导电聚合物的引入,电化学性能进一步提升。最后总结指出基于MnO_2/石墨烯的多元复合材料和器件还面临着安全可靠、规模化生产以及降成本等一系列问题。随着技术的不断成熟和突破,有望在工业、交通以及日常电子器件中获得应用。
        The latest research progress of MnO_2/graphene based binary and ternary composites in supercapacitors are reviewed. Due to the stacking caused by van der Waals forces, the actual specific capacitance of graphene is not very high. The theoretical specific capacitance of MnO_2 is as high as1370 F/g, but its pseudo capacitance is limited by the thickness of MnO_2, and the actual specific capacitance is much smaller than the theoretical value. The combination of graphene and MnO_2, where MnO_2 nanostructures anchored between graphene nanosheets as spacers, can effectively inhibit the stacking of graphene and enhance the interface charge transfer. With the synergistic effect of both functions, it is expected to achieve high specific capacitance and high conductivity and good cycling stability. The preparation method and electrochemical performance of MnO_2/graphene composites are introduced. The electrochemical performance of MnO_2/graphene ternary composites are analyzed. The introduction of metal oxides or conductive polymers can further improve the electrochemical performance. Finally, a series of issues for the application of MnO_2/graphene-based multi-component composites and devices are analyzed, such as safety and reliability, large-scale production and cost reduction. With the mature and break-through of technology, it is expected to achieve applications in industry, transportation and daily electronics.
引文
[1] WANG K, WU H P, MENG Y N, et al. Conducting polymer nanowirearrays for high performance supercapacitors[J]. Small, 2014, 10(1):14-31.
    [2] LIU W W, LI X, ZHU M H, et al. High-performance all-solid stateasymmetric supercapacitor based on Co3O4 nanowires and carbonaerogel[J]. Journal of Power Sources, 2015, 282:179-186.
    [3] WANG Q H, JIAO L F, DU H M, et al. Fe3O4 nanoparticles grown ongraphene as advanced electrode materials for supercapacitors[J].Journal of Power Sources, 2014, 245:101-106.
    [4] MA W J, CHEN S H, YANG S Y, et al. Hierarchical MnO2nanowire/graphene hybrid fibers with excellent electrochemicalperformance for flexible solid-state supercapacitors[J]. Journal ofPower Sources, 2016, 306:481-488.
    [5] ZHANG Y B, DING M J, SONG C J, et al. Selective catalyticreduction of NO with NH3 over MnO2/PDOPA@CNT catalystsprepared by poly(dopamine)functionalization[J]. New Journal ofChemistry, 2018, 42(14):11273-11275.
    [6] LI X, DONG F, XU N, et al. Co3O4/MnO2/hierarchically porouscarbon as superior bifunctional electrodes for liquid andall-solid-state rechargeable zinc-air batteries[J]. ACS Appl. Mater.Interfaces, 2018, 10(18):15591-15601.
    [7] YAO B, ZHANG J, KOU T Y, et al. Paper-based electrodes forflexible energy storage devices[J]. Advanced Science, 2017, 4(7):doi:10.1002/advs.201700107.
    [8] HUI N, CHAI F L, LIN P P, et al. Electrodeposited conductingpolyaniline nanowire arrays aligned on carbon nanotubes network forhigh performance supercapacitors and sensors[J]. Electrochim. Acta,2016, 199:234-241.
    [9] GARAKANI M A, ABOUALI S, CUI J, et al. In-situ TEM study oflithiation into PPy coatedα-MnO2/graphene foam freestandingelectrode[J]. Materials Chemistry Frontiers, 2018, 2(8):1481-1488.
    [10] IGUCHI H, MIYAHARA K, HIGASHI C, et al. Preparation ofuncurled and planar multilayered graphene using polythiophenederivatives via liquid-phase exfoliation of graphite[J]. FlatChem,2018, 8:31-39.
    [11] BAG S, RETNA RAJ C. Hierarchical three-dimensional mesoporousMnO2 nanostructures for high performance aqueous asymmetricsupercapacitors[J]. Mater. Chem., 2016, 4(2):587-595.
    [12] WANG K, YANG J, ZHU J, et al. General solution-processedformation of porous transition-metal oxides on exfoliated molybdenumdisulfides for high-performance asymmetric supercapacitors[J]. Journalof Materials Chemistry A, 2017, 5(22):11236-11245.
    [13] RAMESH S, KARUPPASAMY K, MSOLLI S, et al. Nanocrystallinestructured of NiO/MnO2@nitrogen-doped graphene oxide hybridnanocomposite for high performance supercapacitor[J]. New Journalof Chemistry, 2017, 41(24):15517-15527.
    [14] ZHANG Q Z, ZHANG D, MIAO Z C, et al. Research progress inMnO2-carbon based supercapacitor electrode materials[J]. Small,2018, 14(24):doi:10.1002/smll.201702883.
    [15] SUN S Q, JIANG G H, LIU Y K, et al. Facile preparation of hybridfilms based on MnO2 and reduced graphene oxide for a flexiblesupercapacitor[J]. Journal of Electronic Materials, 2018, 47(10):5993-5999.
    [16] GAO G, ZHANG Q, CHENG X B, et al. Synthesis of three-dimensional rare-earth ions doped CNTs-GO-Fe3O4 hybrid structuresusing one-pot hydrothermal method[J]. Journal of Alloys&Compounds, 2015, 649:82-88.
    [17] SUN H B, GU H Z, CHEN Y. Preparation and electrochemicalproperties of graphene/MnO2 nanocomposites for supercapacitors[J].Key Engineering Materials, 2018, 768:102-108.
    [18] ZHANG L F, DU S Q, LIU Y, et al. Manganese dioxide nanoflakesanchored on reduced graphene oxide with superior electrochemicalperformance for supercapacitorss[J]. IET Micro&Nano Letters,2017, 12(3):147-150.
    [19] MENG X Y, LU L, SUN C W. Green synthesis of three-dimensionalMnO2/graphene hydrogel composites as a high-performanceelectrode material for supercapacitors[J]. Mater. Interfaces, 2018,10(19):16474-16481.
    [20] ZHAO X, WANG H, ZHAI G, et al. Facile assembly of 3D porousreduced graphene oxide/ultrathin MnO2 nanosheets-S aerogels asefficient polysulfide adsorption sites for high-performancelithium-sulfur batteries[J]. Chemistry, 2017, 23(29):7037-7045.
    [21] XU J, CHEN Y, DONG Z, et al. Facile synthesis of theTi3+-TiO2-RGO compound with controllable visible lightphotocatalytic performance:GO regulating lattice defects[J]. Journalof Materials Science, 2018, 53(18):12770-12780.
    [22] LIU C L, GUI D Y, LIU J H. Process dependent graphene-wrappedplate-like MnO2 nanospheres for high performance supercapacitor[J].Chemical Physics Letters, 2014, 614:123-128.
    [23] ZHAO X, TANG J, YU F, et al. Preparation of graphenenanoplatelets reinforcing copper matrix composites byelectrochemical deposition[J]. Journal of Alloys and Compounds,2018, 766(25):266-273.
    [24] XIONG C Y, LI T H, ZHAO T K, et al. Three-dimensionalgraphene/MnO2 nanowalls hybrid for high-efficiency electrochemicalsupercapacitors[J]. NANO, 2018, 13(1):doi:10.1142/s1793292018500133.
    [25] ZHOU J H, CHEN N N, GE Y, et al. Flexible all-solid-statemicro-supercapacitor based on Ni fiber electrode coated with MnO2and reduced graphene oxide via electrochemical deposition[J].Science China Materials, 2018, 6(12):243-253.
    [26] FALCAO E H L, BLAIR R G, MACK J J, et al. Microwaveexfoliation of a graphite intercalation compound[J]. Carbon, 2007,45(6):1367-1369.
    [27] VIMUNA V M, ATHIRA A R, XAVIER T S, et al. Microwaveassisted synthesis of graphene oxide-MnO2 nanocomposites forelectrochemical supercapacitors[J]. AIP Conference Proceedings,2018, 1953(1):doi:10.1063/1.5032471.
    [28] YAN J, FAN Z J, WEI T, et al. Fast and reversible surface redoxreaction of graphene-MnO2 composites as supercapacitorelectrodes[J]. Carbon, 2010, 48(13):3825-3833.
    [29] LIU R R, WEN D D, ZHANG X Y, et al. Three-dimensionalreduced-graphene/MnO2 prepared by plasma treatment ashigh-performance supercapacitor electrodes[J]. Materials ResearchExpress, 2018, 5(6):doi:10.1088/2053-1591/aac7b4.
    [30] QIU X, XU D Y, MA L, et al. Preparation of manganese oxide/graphene aerogel and its application as an advanced supercapacitorelectrode material[J]. International Journal of ElectrochemicalScience, 2017, 12:2173-2183.
    [31] ZHAO Y F, RAN W, HE J, et al. High-performance asymmetricsupercapacitor based on multilayer MnO2/graphene oxide nanoflakesand hierarchical porous carbon with enhanced cycling stability[J].Small, 2014, 11(11):1310-1319.
    [32] MA W J, CHEN S H, YANG S Y, et al. Flexible all-solid-stateasymmetric supercapacitor based on transition metal oxidenanorods/reduced graphene oxide hybrid fibers with high energydensity[J]. Carbon, 2017, 113:151-158.
    [33] SHENG L Z, JIANG L L, WEI T, et al. Fe(CN)63?ion-modifiedMnO2/graphene nanoribbons enabling high energy densityasymmetric supercapacitors[J]. Journal of Materials Chemistry A,2018, 6(17):7649-7658.
    [34] RAKHI R B, ALHEBSHI N A, ANJUM D H, et al. Nanostructuredcobalt sulfide-on-fiber with tunable morphology as electrodes forasymmetric hybrid supercapacitors[J]. Journal of MaterialsChemistry A, 2014, 2(38):16190-16198.
    [35] LI J, CHEN Y, WU Q, et al. Synthesis and electrochemical propertiesof Fe3O4/MnO2/RGOs sandwich-like nano-superstructures[J]. Journalof Alloys&Compounds, 2017, 693:373-380.
    [36] OJHA G P, PANT B, PARK S J, et al. Synthesis and characterizationof reduced graphene oxide decorated with CeO2-doped MnO2nanorods for supercapacitor applications[J]. Journal of Colloid&Interface Science, 2017, 494:338-344.
    [37] WANG K, LI L W, XUE W, et al. Electrodeposition synthesis ofPANI/MnO2/graphene composite materials and its electrochemicalperformance[J]. International Journal of Electrochemical Science,2017, 12(9):8306-8314.
    [38] JI J Y, ZHANG X Y, HUANG Z L, et al. One-step synthesis ofgraphene oxide/polypyrrole/MnO2 ternary nanocomposites with animproved electrochemical capacitance[J]. Journal of Nanoscience&Nanotechnology, 2017, 17(6):4356-4361.
    [39]刘文杰,孙现众,郝青丽.电化学沉积制备MnO2/PEDOT:PSS复合材料及其电容特性研究[J].储能科学与技术, 2018, 7(2):262-269.LIU W J, SUN X Z, HAO Q L. Electrochemical deposition of MnO2/PEDOT:PSS composite and its capacitance characteristics[J]. EnergyStorage Science and Technology, 2018, 7(2):262-269.
    [40] HAREESH K, SHATEESH B, JOSHI R P, et al. Ultra high stablesupercapacitance performance of conducting polymer coated MnO2nanorods/RGO nanocomposites[J]. RSC Advances, 2017, 7(32):20027-20036.
    [41] WU T, WANG C N, MO Y, et al. A ternary composite withmanganese dioxide nanorods and graphene nanoribbons embedded ina polyaniline matrix for high-performance supercapacitors[J]. RSCAdvances, 2017, 7(53):33591-33599.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700