用户名: 密码: 验证码:
同轴环缝流作用下锥形液膜线性稳定性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Linear stability analysis of conical liquid film with coaxial annular gas flow
  • 作者:康忠涛 ; 李清廉 ; 成鹏
  • 英文作者:KANG Zhongtao;LI Qinglian;CHENG Peng;Science and Technology on Scramjet Laboratory,Hypervelocity Aerodynamic Institute,China Aerodynamics Research and Development Center;Science and Technology on Scramjet Laboratory,National University of Defense Technology;College of Aeronautics and Astronautics,National University of Defense Technology;
  • 关键词:锥形液膜 ; 同轴环缝 ; 线性稳定性分析
  • 英文关键词:conical liquid film;;coaxial annular gas flow;;linear stability analysis
  • 中文刊名:GFKJ
  • 英文刊名:Journal of National University of Defense Technology
  • 机构:中国空动力研究与发展中心超高速空动力研究所高超声速冲压发动机技术重点实验室;国防科技大学高超声速冲压发动机技术重点实验室;国防科技大学空天科学学院;
  • 出版日期:2019-04-28
  • 出版单位:国防科技大学学报
  • 年:2019
  • 期:v.41
  • 基金:国家自然科学基金资助项目(11472303,11402298);; 新世纪优秀人才支持计划资助项目(NCET-13-0156)
  • 语种:中文;
  • 页:GFKJ201902003
  • 页数:7
  • CN:02
  • ISSN:43-1067/T
  • 分类号:20-26
摘要
为了分析液同轴离心式喷嘴的雾化机理,对同轴体作用下的锥形液膜进行时间稳定性分析,推导同轴体作用下锥形液膜的色散方程,建立离心式喷嘴出口参数预测模型,用于数值求解色散方程。结果表明:喷嘴出口液膜厚度随着喷注压降的增加而减小,喷雾锥角、液膜速度和轴向速度随着喷注压降的增加而增大。同轴体作用下液膜由正弦模式的表面波主导,因为正弦模式的表面波增长率远大于曲张模式的表面波增长率。当环缝体喷注速度较小时,增加体速度会减小气液相对速度,从而减弱气液相互作用,使得液膜主导表面波增长率和频率减小、破碎时间和破碎长度增加。而当环缝体速度超过一个临界值后,随着体速度的增大,液膜主导表面波增长率和频率迅速增大,破碎时间和破碎长度迅速减小。
        In order to analyze the atomization mechanism of gas liquid swirl injector,a temporal linear stability analysis method was used to investigate the conical liquid film with coaxial annular gas flow.The dispersion equation of a conical liquid film with coaxial annular gas flow was derived and a prediction model was proposed to calculate the parameters needed in solving the dispersion equation.The results show that the film thickness at the injector exit decreases with the increase of pressure drop while the spray cone angle,liquid film velocity and liquid film axial velocity increase with the increase of pressure drop.The sinuous mode disturbance wave dominates the breakup process of conical liquid film with coaxial annular gas flow because the growth rate of sinuous wave is much larger than that of varicose wave.When the gas flow velocity is small,the increase of gas velocity reduces the relative velocity of gas and liquid,which weakens the gas liquid interaction and eliminates the growth rate and frequency of the dominant wave.Finally the breakup time and breakup length increases.However,when the gas velocity is larger than a critical value,the growth rate and frequency of the dominant surface wave increase rapidly with the increase of gas flow velocity,which in turn lowers the breakup time and breakup length immediately.
引文
[1]Fu Q F,Yang L J,Qu Y Y,et al.Linear stability analysis of a conical liquid sheet[J].Journal of Propulsion and Power,2010,26(5):955-968.
    [2]严春吉,解茂昭.可压缩体中的三维粘(黏)性液体空心柱射流稳定性分析[J].上海交通大学学报,2008,42(1):128-132.YAN Chunji,XIE Maozhao.Three-dimensional stability of an annular viscous liquid jet in compressible gas[J].Journal of Shanghai Jiaotong University,2008,42(1):128-132.(in Chinese)
    [3]Herrero E P,Del Valle E M M,Galán M A.Instability study of a swirling annular liquid sheet of polymer produced by airblast atomization[J].Chemical Engineering Journal,2007,133(1/2/3):69-77.
    [4]Liao Y,Jeng S M,Jog M A,et al.Instability of an annular liquid sheet surrounded by swirling air streams[C]//Proceedings of 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,1998:AIAA-98-3832.
    [5]Liao Y,Jeng S M,Jog M A,et al.Instability of an annular liquid sheet surrounded by swirling airstreams[J].AIAAJournal,2000,38(3):453-460.
    [6]Shen J H,Li X G.Breakup of annular viscous liquid jets in two gas streams[J].Journal of Propulsion and Power,1996,12(4):752-759.
    [7]Cao J.Theoretical and experimental study of atomization from an annular liquid sheet[J].Journal of Automobile Engineering,2003,217(8):735-743.
    [8]Panchagnula M V,Sojka P E,Santangelo P J.On the threedimensional instability of a swirling,annular,inviscid liquid sheet subject to unequal gas velocities[J].Physics of Fluids,1996,8(12):3300-3312.
    [9]岳明,杨茂林.锥形液膜空间稳定性分析[J].航空动力学报,2003,18(6):794-798.YUE Ming,YANG Maolin.On the spatial instability of a conical sheet[J].Journal of Aerospace Power,2003,18(6):794-798.(in Chinese)
    [10]王中伟.锥形液膜的Kelvin-Helmholtz扰动波[J].国防科技大学学报,2008,30(3):32-36.WANG Zhongwei.Kelvin-Helmholtz perturbative wave on hollow conical liquid sheets[J].Journal of National University of Defense Technology,2008,30(3):32-36.(in Chinese)
    [11]富庆飞.液体火箭发动机同轴喷嘴稳/动态特性研究[D].北京:北京航空航天大学,2012.FU Qingfei.Investigation of the steady/dynamic characteristics of the coaxial injectors in liquid rocket engine[D].Beijing:Beihang University,2012.(in Chinese)
    [12]Hosseinalipour S M,Ghorbani R,Karimaei H.Effect of liquid sheet and gas streams characteristics on the instability of a hollow cone spray using an improved linear instability analysis[J].Asia-Pacific Journal of Chemical Engineering,2016,11:24-33.
    [13]Chauhan A.Capillary instability of jets[D].USA:City University of New York,1998.
    [14]康忠涛.液同轴离心式喷嘴非定常雾化机理和燃烧特性研究[D].长沙:国防科技大学,2016.KANG Zhongtao.The unsteady atomization mechanism and combustion characteristics of gas-liquid swirl coaxial injector[D].Changsha:National University of Defense Technology,2016.(in Chinese)
    [15]Rogers T,Petersen P,Koopmans L,et al.Structural characteristics of hydrogen and compressed natural gas fuel jets[J].International Journal of Hydrogen Energy,2015,40(3):1584-1597.
    [16]Ibrahim A A.Comprehensive study of internal flow field and linear and nonlinear instability of an annular liquid sheet emanating from an atomizer[D].USA:University of Cincinnati,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700