用户名: 密码: 验证码:
水盐梯度对闽江河口湿地土壤有机碳组分的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of hydrologic and salinity gradients on soil organic carbon composition in Min River Estuarine wetland
  • 作者:王纯 ; 刘兴土 ; 仝川 ; 陈晓旋 ; 陈优阳 ; 牟晓杰 ; 万斯昂
  • 英文作者:WANG Chun;LIU Xing-tu;TONG Chuan;CHEN Xiao-xuan;CHEN You-yang;MOU Xiao-jie;WAN Si-ang;Key Laboratory of Wetland Ecology and Environment,Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences;Institute of Geography,Fujian Normal University;Key Laboratory of Humid Subtropical Eco-geographical Process,Ministry of Education,Fujian Normal University;
  • 关键词:盐度 ; 淹水环境 ; 土壤有机碳 ; 活性组分 ; 闽江河口
  • 英文关键词:salinity;;flooding environment;;soil organic carbon;;active fractions;;Min River Estuary
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:中国科学院东北地理与农业生态研究所湿地生态与环境重点实验室;福建师范大学地理科学学院;福建师范大学亚热带湿地研究中心;
  • 出版日期:2017-10-20
  • 出版单位:中国环境科学
  • 年:2017
  • 期:v.37
  • 基金:国家“973”项目(2013CB430401);; 中国博士后科学基金(2017M611337);; 国家自然科学基金资助(41371127)
  • 语种:中文;
  • 页:ZGHJ201710041
  • 页数:10
  • CN:10
  • ISSN:11-2201/X
  • 分类号:321-330
摘要
为了揭示水盐梯度对河口湿地土壤有机碳组分的影响,对闽江河口不同淹水环境和盐度下短叶茳芏(Cyperus malaccensis)湿地土壤活性有机碳含量进行了测定与分析.结果表明,无论半咸水湿地还是淡水湿地,土壤微生物生物量碳(MBC)含量均随淹水频率增加而增加,增幅分别为67.8%和38.8%.半咸水湿地高低潮滩的土壤MBC含量均低于淡水湿地,高低潮滩降幅分别为52.9%和43.1%.半咸水湿地高低潮滩土壤可溶性有机碳(DOC)含量均高于淡水湿地,增幅分别为56.7%和105.6%.2种湿地土壤易氧化有机碳(EOC)含量均随淹水频率增加而降低,半咸水湿地高低潮滩间降幅18.0%,淡水湿地降幅50.1%.半咸水湿地高低潮滩土壤EOC含量均高于淡水湿地,增幅分别为20.2%和97.4%.微生物熵以及DOC和EOC占SOC的比值分别为0.42%~1.76%、0.39%~0.85%和20.14%~36.49%.微生物熵随盐度增加而降低,土壤DOC和EOC的分配比例随盐度的增加而增加.相对于淹水环境变化,土壤TN含量和电导率对SOC及其活性组分含量影响的贡献更大.土壤DOC、EOC与SOC显著正相关,土壤MBC与SOC、EOC和DOC均呈负相关,暗示底物的有效性和土壤MBC周转速率是影响土壤微生物活性和碳库积累的重要因子.淹水频率增加提高了土壤微生物的数量,但土壤微生物对淹水环境有一定的适应机制.盐度增加可提高土壤DOC、EOC含量,但降低土壤MBC含量.土壤氮含量和盐度是影响闽江河口湿地生态系统土壤碳库演变的重要限制性参数.
        In order to reveal the effects of hydrologic and salinity gradients on soil organic carbon composition in estuarine wetlands, the contents of soil organic carbon fractions along the hydrologic gradient within a freshwater Cyperus malaccensis marsh and a brackish C. malaccensis marshes in the Min River Estuary were measured. Soil microibial biomass carbon(MBC) contents raised with increasing flooding frequency both in brackish-water marsh(67.8%) and freshwater marsh(38.8%), respectively. For both high tidal flat and low tidal flat, the MBC content in brackish-marsh was lower than that in freshwater marsh, and declining ranges were 52.9% and 43.1% high tidal flat via low tidal flat, respectively. Soil dissolved organic carbon(DOC) content in brackish marsh was higher than that in freshwater marsh, and increasing range were 56.7% and 105.6% high tidal flat via low tidal flat. Soil EOC content declined with increasing flooding frequency, and declining ranges were 18.0% and 50.1% brackish marsh via freshwater marsh, respectively. Soil EOC content in brackish marsh was higher than that in freshwater marsh, increased by 20.2% in high tidal flat and 97.4% in low tidal flat, respectively. The percentages of soil microbial entropy, DOC and EOC in SOC were 0.42% ~ 1.76%, 0.39% ~ 0.85% and 20.14% ~ 36.49%, respectively. Microbial entropy declined with increasing flooding frequency, while the proportions of soil DOC and EOC in SOC increased with increasing flooding frequency. Compared with the varied flooding environment, soil TN content and conductivity had a greater contribution on the SOC contents and its active components. Soil DOC and EOC contents were positively correlated with SOC content, and soil MBC content was negatively correlated with SOC, EOC and DOC contents, which implied substrate availability and soil MBC turnover rate exerted important impacts on controlling soil microbial activity and soil carbon pool accumulation in estuarine tidal marsh. Soil microbes increased with increasing flooding frequency, but they had a certain adaptation mechanism to the flooding environment. Elevated salinity increased soil DOC and EOC contents, but decreased soil MBC content. Soil nitrogen content and salinity which were important restrictive parameters demonstrated obviously effects on controlling soil carbon pool evolution in the tidal marsh ecosystem of the Min River estuary.
引文
[1]杨丽霞,潘剑君.土壤活性有机碳库测定方法研究进展[J].土壤通报,2004,35(4):502-506.
    [2]万忠梅,郭岳,郭跃东.土地利用对湿地土壤活性有机碳的影响研究进展[J].生态环境学报,2011,20(3):567-570.
    [3]Liang B C,Mac Kenzie A F,Schnitzer M,et al.Managementinduced change in labile soil organic matter under continuous corn in eastern Canadian soils[J].Biology and Fertility of Soils,1997,26(2):88-94.
    [4]倪进治,徐建民,谢正苗.土壤生物活性有机碳库及其表征指标的研究[J].植物营养与肥料学报,2001,7(1):56-63.
    [5]Ghani A,Dexter M,Perrott K W.Hot-water extractable carbon in soils:a sensitive measurement for determining impacts of fertilisation,grazing and cultivation[J].Soil Biology and Biochemistry,2003,35(9):1231-1243.
    [6]王清奎,汪思龙,冯宗炜,等.土壤活性有机质及其与土壤质量的关系[J].生态学报,2005,25(3):513-519.
    [7]Lunau M,Voss M,Erickson M,et al.Excess nitrate loads to coastal waters reduces nitrate removal efficiency:mechanism and implications for coastal eutrophication[J].Environmental Microbiology,2013,15(5):1492-1504.
    [8]曾志华,杨民和,佘晨兴,等.闽江河口区淡水和半咸水潮汐沼泽湿地土壤产甲烷菌多样性[J].生态学报,2014,34(10):2674-2681.
    [9]Weston N B,Dixon R E,Joye S B.Ramifications of increased salinity in tidal freshwater sediments:Geochemistry and microbial pathways of organic matter mineralization[J].Journal of Geophysical Research:Biogeosciences,2006,111(G1):1-14.
    [10]Chambers L G,Reddy K R,Osborne T Z.Short-term response of carbon cycling to salinity pulses in a freshwater wetland[J].Soil Science Society of America Journal,2011,75(5):2000-2007.
    [11]Neubauer S C,Franklin R B,Berrier D J.Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon[J].Biogeosciences,2013,10(12):8171-8183.
    [12]王纯,张璟钰,黄佳芳,等.盐度对感潮区淡水沼泽土壤甲烷产生潜力的影响.湿地科学,2015,13(5):593-601.
    [13]Wang C,Tong C,Chambers L G,et al.Identifying the salinity thresholds that impact greenhouse gas production in subtropical tidal freshwater marsh soils[J].Wetlands,2017,1-13.doi:10.1007/s13157-017-0890-8.
    [14]Morrissey E M,Gillespie J L,Morina J C,et al.Salinity affects microbial activity and soil organic matter content in tidal wetlands[J].Global change biology,2014,20(4):1351-1362.
    [15]Pierfelice K N,Graeme Lockaby B,Krauss K W,et al.Salinity influences on aboveground and belowground net primary productivity in tidal wetlands[J].Journal of Hydrologic Engineering,2015:D5015002.
    [16]Kaase C T,Kupfer J A.Sedimentation patterns across a Coastal Plain floodplain:The importance of hydrogeomorphic influences and cross-floodplain connectivity[J].Geomorphology,2016,269:43-55.
    [17]Boyd B M,Sommerfield C K,Elsey-Quirk T.Hydrogeomorphic influences on salt marsh sediment accumulation and accretion in two estuaries of the US Mid-Atlantic coast[J].Marine Geology,2017,383:132-145.
    [18]曾从盛,王维奇,翟继红.闽江河口不同淹水频率下湿地土壤全硫和有效硫分布特征[J].水土保持学报,2011,(6):246-250.
    [19]王维奇,仝川,贾瑞霞,等.不同淹水频率下湿地土壤碳氮磷生态化学计量学特征[J].水土保持学报,2010,(3):238-242.
    [20]Zhang W L,Zeng C S,Tong C,et al.Spatial distribution of phosphorus speciation in marsh sediments along a hydrologic gradient in a subtropical estuarine wetland,China[J].Estuarine,Coastal and Shelf Science,2015,154:30-38.
    [21]Duhamel S,Nogaro G,Steinman A D.Effects of water level fluctuation and sediment-water nutrient exchange on phosphorus biogeochemistry in two coastal wetlands[J].Aquatic Sciences,2017,79(1):57-72.
    [22]仲启铖,关阅章,刘倩,等.水位调控对崇明东滩围垦区滩涂湿地土壤呼吸的影响[J].应用生态学报,2013,24(8):2141-2150.
    [23]盛宣才,吴明,邵学新,等.模拟水位变化对杭州湾芦苇湿地夏季温室气体日通量的影响[J].生态学报,2016,36(15).
    [24]高灯州,曾从盛,章文龙,等.闽江口湿地土壤有机碳及其活性组分沿水文梯度分布特征[J].水土保持学报,2014,28(6):216-221.
    [25]高灯州,章文龙,曾从盛,等.闽江河口湿地土壤生物和非生物因子与水淹频率的关系[J].湿地科学,2016,(1):27-36.
    [26]仲启铖,王江涛,周剑虹,等.水位调控对崇明东滩围垦区滩涂湿地芦苇和白茅光合,形态及生长的影响[J].应用生态学报,2014,25(2):408-418.
    [27]管博,栗云召,夏江宝,等.黄河三角洲不同水位梯度下芦苇植被生态特征及其与环境因子相关关系[J].生态学杂志,2014,33(10):2633-2639.
    [28]仝川,刘白贵.不同水淹环境下河口感潮湿地枯落物分解及营养动态[J].地理研究,2009,(1):118-128.
    [29]Chambers L G,Osborne T Z,Reddy K R.Effect of salinity pulsing events on soil organic carbon loss across an intertidal wetland gradient:A laboratory experiment[J].Biogeochemistry,2013,115(1):363-383.
    [30]Neubauer S C.Ecosystem responses of a tidal freshwater marsh experiencing saltwater intrusion and altered hydrology[J].Estuaries and Coasts,2013,36(3):491-507.
    [31]Howard R J,Biagas J,Allain L.Growth of common brackish marsh macrophytes under altered hydrologic and salinity regimes[J].Wetlands,2016,36(1):11-20.
    [32]Sun Z,Mou X,Sun W.Potential effects of tidal flat variations on decomposition and nutrient dynamics of Phragmites australis,Suaeda salsa and Suaeda glauca litter in newly created marshes of the Yellow River estuary,China[J].Ecological Engineering,2016,93:175-186.
    [33]刘剑秋,曾从盛,陈宁.闽江河口湿地研究[M].北京:科学出版社,2006.
    [34]仝川,曾从盛,王维奇,等.闽江河口芦苇潮汐湿地甲烷通量及主要影响因子[J].环境科学学报,2009,29:207-216.
    [35]Mou X J,Liu X T,Tong C,Sun Z G.Responses of CH4 emissions to nitrogen addition and Spartina alterniflora invasion in Minjiang River estuary,southeast of China[J].Chinese Geographical Science,2014,24(5):562-574.
    [36]杨平,徐辉,万金红,等.台风“苏力”对闽江河口沼泽土壤间隙水中溶解性甲烷和乙酸等的影响[J].湿地科学,2015,(5):622-629.
    [37]鲁如坤.土壤化学农业分析方法[M].北京:中国农业科技出版社,1999.
    [38]Blair G J,Lefroy R D B,Lisle L.Soil carbon fractions based on their degree of oxidation,and the development of a carbon management index for agricultural systems[J].Australian Journal of Agricultural Research,1995,46(7):1459-1466.
    [39]盂宪民.湿地与全球环境变化.地理科学,1999,19(5):385-391.
    [40]Str?m L,Christensen T R.Below ground carbon turnover and greenhouse gas exchanges in a sub-arctic wetland[J].Soil Biology and Biochemistry,2007,39(7):1689-1698.
    [41]侯翠翠,宋长春,李英臣,等.不同水分条件沼泽湿地土壤轻组有机碳与微生物活性动态[J].中国环境科学,2012,32(1):113-119.
    [42]万忠梅,宋长春,郭跃东,等.毛苔草湿地土壤酶活性及活性有机碳组分对水分梯度的响应[J].生态学报,2008,28(12):5980-5986.
    [43]Xu M,Lou Y,Sun X,et al.Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation[J].Biology and Fertility of Soils,2011,47(7):745-752.
    [44]Siczek A,Fr?c M.Soil microbial activity as influenced by compaction and straw mulching[J].International Agrophysics,2012,26(1):65-69.
    [45]Wang W,Lai D Y F,Wang C,et al.Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field[J].Soil and Tillage Research,2015,152:8-16.
    [46]Lipson D A,Schmidt S K,Monson R K.Carbon availability and temperature control the post-snowmelt decline in alpine soil microbial biomass[J].Soil Biology and Biochemistry,2000,32(4):441-448.
    [47]Laiho R,Laine J,Trettin C C,et al.Scots pine litter decomposition along drainage succession and soil nutrient gradients in peatland forests,and the effects of inter-annual weather variation[J].Soil Biology and Biochemistry,2004,36(7):1095-1109.
    [48]张金波,宋长春.土地利用方式对土壤碳库影响的敏感性评价指标[J].生态环境,2003,12(4):500-504.
    [49]黄宇,汪思龙,冯宗炜,等.不同人工林生态系统林地土壤质量评价[J].应用生态学报,2004,15(12):2199-2205.
    [50]Bragazza L,Freeman C,Jones T,et al.Atmospheric Nitrogen Deposition Promotes Carbon Loss from Peat Bogs[J].Proceedings of the National Academy of Sciences of the United States of America,2006,103(51):19386-9.
    [51]Guggenberger G,Kaiser K.Dissolved organic matter in soil:challenging the paradigm of sorptive preservation[J].Geoderma,2003,113(3):293-310.
    [52]Zhang M,Zhang X,Liang W,et al.Distribution of soil organic carbon fractions along the altitudinal gradient in Changbai Mountain,China[J].Pedosphere,2011,21(5):615-620.
    [53]Chambers L G,Guevara R,Boyer J N,et al.Effects of salinity and inundation on microbial community structure and function in a mangrove peat soil[J].Wetlands,2016,36(2):361-371.
    [54]Weston N B,Vile M A,Neubauer S C,et al.Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soil[J].Biogeochemistry,2011,102(1):135-151.
    [55]Ikenaga M,Guevara R,Dean A L,et al.Changes in community structure of sediment bacteria along the Florida coastal everglades marsh-mangrove-seagrass salinity gradient[J].Microbial ecology,2010,59(2):284-295.
    [56]Thurman E M.Organic geochemistry of natural waters(Vol.2)[M].Springer Science&Business Media,2012.
    [57]Wang G,Guan D,Zhang Q,et al.Distribution of dissolved organic carbon and KMn O4-oxidizable carbon along the lowto-high intertidal gradient in a mangrove forest[J].Journal of Soils and Sediments,2015,15(11):2199-2209.
    [58]肖烨,黄志刚,武海涛,等.三江平原不同湿地类型土壤活性有机碳组分及含量差异[J].生态学报,2015,35(23):7625-7633.
    [59]盛浩,周萍,袁红,等.亚热带不同稻田土壤微生物生物量碳的剖面分布特征[J].环境科学,2013,34(4):1576-1582.
    [60]Lützow M V,K?gel-Knabner I,Ekschmitt K,et al.Stabilization of organic matter in temperate soils:mechanisms and their relevance under different soil conditions-a review[J].European Journal of Soil Science,2006,57(4):426-445.
    [61]Song X Y,Spaccini R,Pan G,et al.Stabilization by hydrophobic protection as a molecular mechanism for organic carbon sequestration in maize-amended rice paddy soils[J].Science of the Total Environment,2013,458:319-330.
    [62]Jiménez J J,Villar L.Mineral controls on soil organic Cstabilization in alpine and subalpine soils in the Central Pyrenees:Insights from wet oxidation methods,mineral dissolution treatment and radiocarbon dating[J].Catena,2017,149(1):363-373.
    [63]Schmidt M W,Torn M S,Abiven S,et al.Persistence of soil organic matter as an ecosystem property[J].Nature,2011,478(7367):49-56.
    [64]潘根兴,陆海飞,李恋卿,等.土壤碳固定与生物活性:面向可持续土壤管理的新前沿[J].地球科学进展,2015,30(8):940-951.
    [65]吴金水,肖和艾.土壤微生物生物量碳的表观周转时间测定方法[J].土壤学报,2004,41(3):401-407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700