用户名: 密码: 验证码:
河口湿地土壤氮矿化速率的干土效应响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of Soil Nitrogen Mineralization Characteristics to Dry Soil Effect in Min River Estuary
  • 作者:颜燕燕 ; 林啸
  • 英文作者:YAN Yan-yan;LIN Xiao;School of Geographical Sciences,Fujian Normal University;Key Laboratory of Humid Subtropical Eco-geographical Processes,Ministry of Education;Institute of Geography,Fujian Normal University;
  • 关键词: ; 干土效应 ; 矿化作用 ; 湿地 ; 闽江口
  • 英文关键词:Nitrogen;;Dry soil effect;;Mineralization;;Wetland;;Min River estuary
  • 中文刊名:AHNY
  • 英文刊名:Journal of Anhui Agricultural Sciences
  • 机构:福建师范大学地理科学学院;湿润亚热带生态—地理过程教育部重点实验室;福建师范大学地理研究所;
  • 出版日期:2018-01-12 17:37
  • 出版单位:安徽农业科学
  • 年:2018
  • 期:v.46;No.579
  • 基金:福建省自然科学基金项目(2014J05046);; 福建省公益类科研院所专项(2017R1034-5);; 福建省教育厅A类项目(JA12084)
  • 语种:中文;
  • 页:AHNY201802037
  • 页数:6
  • CN:02
  • ISSN:34-1076/S
  • 分类号:106-110+117
摘要
[目的]研究闽江河口土壤氮矿化速率对干土的响应。[方法]选取闽江河口鳝鱼滩高潮滩秋茄[Kandelia candel(Linn.)Druce)]芦苇(Phragmites australis)、互花米草(Spartina alterniflora)和咸草(Cyperus malaccensis)4种不同植被覆被的沼泽湿地采样,以这4种不同土壤的鲜土样与风干土样为供试材料进行室内培养试验,分析p H、水含量和NH4+-N、NO-2-N、NO3--N含量,研究干土效应对土壤氮矿化作用的影响。[结果]鲜土无明显的硝化作用,氨化作用是其主要的氮矿化来源。鲜土矿化速率表现为互花米草[2.63±0.48μg/(g·h)]>芦苇[2.39±0.05μg/(g·h)]>咸草[2.20±0.47μg/(g·h)]>秋茄[1.94±0.29μg/(g·h)]。而风干土复水试验结果表明,秋茄和咸草风干土的最佳复水时间均为4 d,而互花米草和芦苇则为47 d。[结论]该研究可为氮循环研究提供参考。
        [Objective]The aim is to study the responses of soil nitrogen mineralization characteristics to dry soil effect in Min River estuary.[Method]With incubation test,responses of soil nitrogen mineralization characteristics in Min River estuary to dry soil effect were studied. The soil samples included dried soil and wet soil,which were collected from the brackish marsh of Kandelia candel( Linn.) Druce,Phragmites australis,Spartina alterniflora,and Cyperus malaccensis in Shanyutan wetland. Various soil properties were measured including the p H,moisture,and the contents of NH4+-N,NO-2-N,and NO3--N. [Result]Wet soil mineralization rate was WH [2. 63 ± 0. 48 μg/( g · h) ] > WL[2. 39 ±0. 05 μg/( g·h) ]> WX [2. 20 ± 0. 47 μg/( g·h) ]> WQ[1. 94 ± 0. 29 μg/( g·h) ]. The fresh soil nitrification was no obvious,and the ammonification was the main source of nitrogen mineralization. Dry soil effect experiments showed that 4 days was the best time of incubation for sediments covered by Kandelia candel( Linn.) Druce and Cyperus malaccensis,while 4 to 7 days for Phragmites australis and Spartina alterniflora.[Conclusion]The research can provide reference for studying nitrogen cycle.
引文
[1]DIAZ R J,ROSENBERG R.Spreading dead zones and consequences for marine ecosystems[J].Science,2008,321(5891):926-929.
    [2]Li X F,HOU L J,LIU M,et al.Primary effects of extracellular enzyme activity and microbial community on carbon and nitrogen mineralization in estuarine and tidal wetlands[J].Applied microbiology and biotechnology,2015,99(6):2895-2909.
    [3]LIND L P D,AUDET J,TONDERSKI K,et al.Nitrate removal capacity and nitrous oxide production in soil profiles of nitrogen loaded riparian wetlands inferred by laboratory microcosms[J].Soil biology and biochemistry,2013,60:156-164.
    [4]LANG M,CAI Z C,MARY B,et al.Land-use type and temperature affect gross nitrogen transformation rates in Chinese and Canadian soils[J].Plant and soil,2010,334(1/2):377-389.
    [5]BARTLETT R,JAMES B.Studying dried,stored soil samples:Some pitfalls[J].Soil science society of america journal,1980,44(4):721-724.
    [6]LADO-MONSERRAT L,LULL C,BAUTISTA I,et al.Soil moisture increment as a controlling variable of the“Birch effect”.Interactions with the pre-wetting soil moisture and litter addition[J].Plant and soil,2014,379(1/2):21-34.
    [7]林江辉,李辉信,胡锋,等.干土效应对土壤生物组成及矿化与硝化作用的影响[J].土壤学报,2005,41(6):924-930.
    [8]RUSSELL E W.Soil conditions and plant growth[J].Soil science,1962,93(1):73.
    [9]刘艳丽,张斌,胡锋,等.干湿交替对水稻土碳氮矿化的影响[J].土壤,2008,40(4):554-560.
    [10]刘云凯,张彦东,孙海龙.干湿交替对东北温带次生林与落叶松人工林土壤有机碳矿化的影响[J].水土保持学报,2010,24(5):213-217.
    [11]JIN V L,HANEY R L,FAY P A,et al.Soil type and moisture regime control microbial C and N mineralization in grassland soils more than atmospheric CO2-induced changes in litter quality[J].Soil biology and biochemistry,2013,58:172-180.
    [12]潘齐坤,罗专溪,邱昭政,等.九龙江口湿地表层沉积物氮的形态分布特征[J].环境科学研究,2011,24(6):673-678.
    [13]胡伟芳,曾从盛,高君颖,等.闽江口鳝鱼滩芦苇湿地沉积物甲烷产生与氧化潜力对外源物质输入的响应[J].环境科学学报,2015,35(4):1116-1124.
    [14]仝川,黄佳芳,王维奇,等.闽江口半咸水芦苇潮汐沼泽湿地甲烷动态[J].地理学报,2012,67(9):1165-1180.
    [15]王维奇,王纯,仝川,等.闽江河口区盐-淡水梯度下芦苇沼泽土壤有机碳特征[J].湿地科学,2012,10(2):164-169.
    [16]闫宗平.闽江河口湿地入侵种互花米草甲烷排放特征[D].福州:福建师范大学,2008.
    [17]林贤彪,林啸,颜燕燕,等.闽江口盐淡水湿地沉积物:水界面无机氮交换通量特征[J].水土保持学报,2013,27(5):260-266.
    [18]XIA Y,ZHU Y G,GU Q,et al.Does long-term fertilization treatment affect the response of soil ammonia-oxidizing bacterial communities to Zn contamination?[J].Plant and soil,2007,301(1/2):245-254.
    [19]刘波,周锋,王国祥,等.沉积物氮形态与测定方法研究进展[J].生态学报,2011,31(22):6947-6958.
    [20]HISHI T,URAKAWA R,TASHIRO N,et al.Seasonality of factors controlling N mineralization rates among slope positions and aspects in cool-temperate deciduous natural forests and larch plantations[J].Biology and fertility of soils,2014,50(2):343-356.
    [21]刘星岑,魏江生,周梅,等.兴安落叶松林土壤的无机态氮及氮矿化速率[J].东北林业大学学报,2014,42(4):60-64.
    [22]王雨春,万国江,尹澄清,等.红枫湖、百花湖沉积物全氮、可交换态氮和固定铵的赋存特征[J].湖泊科学,2002,14(4):301-309.
    [23]HEUMANN S,RIMMER D L,SCHLICHTING A,et al.Effects of potentially inhibiting substances on C and net N mineralization of a sandy soil:A case study[J].Journal of plant nutrition and soil science,2013,176(1):35-39.
    [24]解成杰,郭雪莲,余磊朝,等.滇西北高原纳帕海湿地土壤氮矿化特征[J].生态学报,2013,33(24):7782-7787.
    [25]HARAMOTO E R,BRAINARD D C.Strip tillage and oat cover crops increase soil moisture and influence N mineralization patterns in cabbage[J].Hort Science,2012,47(11):1596-602.
    [26]KADER M A,SLEUTEL S,BEGUM S A,et al.Nitrogen mineralization in sub-tropical paddy soils in relation to soil mineralogy,management,p H,carbon,nitrogen and iron contents[J].European journal of soil science,2013,64(1):47-57.
    [27]KNOEPP J D,SWANK W T.Rates of nitrogen mineralization across an elevation and vegetation gradient in the southern Appalachians[J].Plant and soil,1998,204(2):235-241.
    [28]陈印平,潘开文,吴宁,等.凋落物质量和分解对中亚热带栲木荷林土壤氮矿化的影响[J].应用与环境生物学报,2005,11(2):146-151.
    [29]刘白贵.闽江河口湿地芦苇、短叶茳芏和互花米草三种植物枯落物分解研究[D].福州:福建师范大学,2008.
    [30]翟水晶,刘白贵,贾宜,等.闽江河口潮汐沼泽枯落物分解过程的能量动态特征[J].福建师范大学学报(自然科学版),2013,29(4):73-79.
    [31]高俊琴,欧阳华,张锋,等.若尔盖高寒湿地土壤氮矿化对温度和湿度的响应[J].湿地科学,2008,6(2):229-234.
    [32]陈林,张佳宝,赵炳梓,等.不同施氨水平下土壤的生化性质对干湿交替的响应[J].土壤学报,2013,50(4):675-683.
    [33]MIKHA M M,RICE C W,MILLIKEN G A.Carbon and nitrogen mineralization as affected by drying and wetting cycles[J].Soil biology and biochemistry,2005,37(2):339-347.
    [34]朱兆良,文启孝.中国土壤氮素[M].南京:江苏科学技术出版社,1992.
    [35]SCHIMEL J,BALSER T C,WALLENSTEIN M.Microbial stress-response physiology and its implications for ecosystem function[J].Ecology,2007,88(6):1386-1394.
    [36]FIERER N,SCHIMEL J P.Effects of drying-rewetting frequency on soil carbon and nitrogen transformations[J].Soil biology and biochemistry,2002,34(6):777-787.
    [37]HALVERSON L J,JONES T M,FIRESTONE M K.Release of intracellular solutes by four soil bacteria exposed to dilution stress[J].Soil science society of america journal,2000,64(5):1630-1637.
    [38]张子川.闽江口不同盐度短叶茳芏潮汐沼泽土壤理化特征及模拟盐水入侵对甲烷产生速率的影响[D].福州:福建师范大学,2013.
    [39]王晓龙,徐立刚,姚鑫,等.鄱阳湖典型湿地植物群落土壤微生物量特征[J].生态学报,2010,30(18):5033-5042.
    [40]黄秋雨.崇明岛芦苇湿地土壤微生物性质的环岛特征[D].上海:华东师范大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700