用户名: 密码: 验证码:
动荷载作用下冻结黏土破坏特性试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study on failure properties of frozen clay under dynamic loading
  • 作者:栗晓林 ; 王红坚 ; 邹少军 ; 江聪 ; 牛永红
  • 英文作者:LI Xiaolin;WANG Hongjian;ZOU Shaojun;JIANG Cong;NIU Yonghong;State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Unit 63983 of PLA;Key Laboratory of the Western Disaster and Environmental Mechanics, Ministry of Education,Lanzhou University;
  • 关键词:冻结黏土 ; 破坏强度 ; 破坏应变 ; 破坏应变比能
  • 英文关键词:frozen clay;;failure strength;;failure strain;;failure strain energy
  • 中文刊名:ZNGD
  • 英文刊名:Journal of Central South University(Science and Technology)
  • 机构:中国科学院西北生态环境资源研究院冻土工程国家重点实验室;中国科学院大学;中国人民解放军63983部队;兰州大学西部灾害与环境力学教育部重点实验室;
  • 出版日期:2019-03-26
  • 出版单位:中南大学学报(自然科学版)
  • 年:2019
  • 期:v.50;No.295
  • 基金:国家重点研发计划(2017YFC0405103);; 冻土工程国家重点实验室自主立项课题(SKLFSE-ZY-15)~~
  • 语种:中文;
  • 页:ZNGD201903018
  • 页数:8
  • CN:03
  • ISSN:43-1426/N
  • 分类号:151-158
摘要
对冻结黏土进行单轴压缩试验和振动荷载试验,研究静-动荷载作用下冻结黏土的破坏强度、起始屈服强度、破坏应变、破坏时间、破坏应变比能,并进行对比分析。研究结果表明:冻结黏土破坏强度和起始屈服强度随温度降低而显著增大,振动频率的影响较小;冻结黏土破坏应变和破坏时间随温度降低呈现先增大后减小的趋势,温度的降低导致冻结黏土脆性增强;冻结黏土破坏应变比能是衡量冻结黏土抵御破坏能力的指标,随温度降低而增大,振动频率的影响规律不明显;在振动荷载作用下,破坏强度和起始屈服强度增大,破坏应变、破坏时间和破坏应变比能减小,振动荷载使得冻结黏土脆性增强,并且有利于破坏冻结黏土。
        The uniaxial compression tests and the vibrating load tests were carried out, and the failure strength, initial yield strength, failure strain, failure time, failure strain energy of frozen clay were studied and compared under static-dynamic loading. The results show that the failure strength and initial yield strength of frozen clay increase significantly with the decrease of temperature, and the influence of vibrational frequency is relatively small. The failure strain and time of frozen clay show a tendency to increase firstly and then decrease with the decrease of temperature, and the decrease of temperature enhances the fragility of frozen clay. The failure strain energy of the frozen clay is an indicator to measure the ability of frozen clay to resist damage, which increases with the decrease of the temperature and the influence of the vibrational frequency is not obvious. In the situation of vibrating load, the failure strength and the initial yield strength increase, but the failure strain, the failure time and the failure strain energy all decrease. The vibrating load enhances the fragility of frozen clay and is good for destroying the frozen clay.
引文
[1]HAYNES F D,KARALIUS J A,KALAFUT J.Strain rate effect on the strength of frozen silt[R].Hanover:Cold Regions Research and Engineering Laboratory,1975.
    [2]HAYNES F D,KARALIUS J A.Effect of temperature on the strength of frozen silt[R].Hanover:Cold Regions Research and Engineering Laboratory,1977.
    [3]BRAGG R A,ANDERSLAND O B.Strain rate,temperature,and sample size effects on compression and tensile properties of frozen sand[J].Engineering Geology,1981,18(1):35-46.
    [4]朱元林.冻结粉砂在常变形速度下的单轴抗压强度[J].冰川冻土,1986,8(4):365-380.ZHU Yuanlin.Uniaxial compressive strength of frozen silt under constant deformation rates[J].Journal of Glaciology and Geocryology,1986,8(4):365-380.
    [5]李海鹏,林传年,张俊兵,等.饱和冻结黏土在常应变率下的单轴抗压强度[J].岩土工程学报,2004,26(1):105-109.LI Haipeng,LIN Chuannian,ZHANG Junbing,et al.Uniaxial compressive strength of saturated frozen clay at constant strain rate[J].Chinese Journal of Geotechnical Engineering,2004,26(1):105-109.
    [6]杜海民,马巍,张淑娟,等.应变率与含水率对冻土单轴压缩特性影响研究[J].岩土力学,2016,37(5):1373-1379.DU Haimin,MA Wei,ZHANG Shujuan,et al.Effects of strain rate and water content on uniaxial compressive characteristics of frozen soil[J].Rock and Soil Mechanics,2016,37(5):1373-1379.
    [7]CHAICHANAVONG T.Dynamic properties of ice and frozen clay under cyclic triaxial loading condition[D].Michigan:Michigan State University,East Lansing.Department of Civil and Sanitary Engineering,1976:12-20.
    [8]LI J C,BALADI G Y,ANDERSLAND O B.Cyclic triaxial tests on frozen sand[J].Engineering Geology,1979,13(1/2/3/4):233-246.
    [9]何平,张家懿,朱元林,等.振动频率对冻土破坏之影响[J].岩土工程学报,1995,17(3):78-81.HE Ping,ZHANG Jiayi,ZHU Yuanlin,et al.Influence of vibration frequency on the failure of frozen soil[J].Chinese Journal of Geotechnical Engineering,1995,17(3):78-81.
    [10]沈忠言,张家懿.振动荷载作用下饱水冻结粉土的单轴抗压强度[J].冰川冻土,1996,18(2):68-75.SHEN Zhongyan,ZHANG Jiayi.The uniaxial compressive strength of frozen saturated silt under vibrating load[J].Journal of Glaciology and Geocryology,1995,17(3):78-81.
    [11]沈忠言,张家懿.冻结粉土的动强度特性及其破坏准则[J].冰川冻土,1997,19(2):47-54.SHEN Zhongyan,ZHANG Jiayi.Dynamic strength characteristics and failure criterion of frozen silt[J].Journal of Glaciology and Geocryology,1997,19(2):47-54.
    [12]沈忠言,张家懿.冻结粉土动强度的荷载效应及长期极限动强度[J].冰川冻土,1998,20(1):43-46.SHEN Zhongyan,ZHANG Jiayi.Loading Effect of dynamic strength and limit of long-term dynamic strength of frozen silt[J].Journal of Glaciology and Geocryology,1998,20(1):43-46.
    [13]WANG Jiahui,LING Xianzhang,LI Qionglin,et al.Accumulated permanent strain and critical dynamic stress of frozen silty clay under cyclic loading[J].Cold Regions Science and Technology,2018,153:130-143.
    [14]王丽霞,凌贤长,徐学燕,等.青藏铁路冻结粉质粘土动静三轴试验对比[J].岩土工程学报,2005,27(2):202-205.WANG Lixia,LING Xianzhang,XU Xueyan,et al.Comparison of dynamic and static triaxial test on frozen silty clay of Qinghai-Tibet railway[J].Chinese Journal of Geotechnical Engineering,2005,27(2):202-205.
    [15]谢和平,彭瑞东,鞠杨.岩石变形破坏过程中的能量耗散分析[J].岩石力学与工程学报,2004,23(21):3565-3570.XIE Heping,PENG Ruidong,JU Yang.Energy dissipation of rock deformation and fracture[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(21):3565-3570.
    [16]谢和平,鞠杨,黎立云,等.岩体变形破坏过程的能量机制[J].岩石力学与工程学报,2008,27(9):1729-1740.XIE Heping,JU Yang,LI Liyun,et al.Energy mechanism of deformation and failure of rock masses[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(9):1729-1740.
    [17]赵忠虎,谢和平.岩石变形破坏过程中的能量传递和耗散研究[J].四川大学学报(工程科学),2008,40(2):26-31.ZHAO Zhonghu,XIE Heping.Energy transfer and energy dissipation in rock deformation and fracture[J].Journal of Sichuan University(Engineering Science Edition),2008,40(2):26-31.
    [18]孙倩,李树忱,冯现大,等.基于应变能密度理论的岩石破裂数值模拟方法研究[J].岩土力学,2011,32(5):1575-1582.SUN Qian,LI Shuchen,FENG Xianda,et al.Study of numerical simulation method of rock fracture based on strain energy density theory[J].Rock and Soil Mechanics,2011,32(5):1575-1582.
    [19]黎立云,谢和平,鞠杨,等.岩石可释放应变能及耗散能的实验研究[J].工程力学,2011,28(3):35-40.LI Liyun,XIE Heping,JU Yang,et al.Experimental investigations of releasable energy and dissipative energy within rock[J].Engineering Mechanics,2011,28(3):35-40.
    [20]李夕兵,左宇军,马春德.动静组合加载下岩石破坏的应变能密度准则及突变理论分析[J].岩石力学与工程学报,2005,24(16):2814-2824.LI Xibing,ZUO Yujun,MA Chunde.Failure criterion of strain energy density and catastrophe theory analysis of rock subjected to static-dynamic coupling loading[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2814-2824.
    [21]肖福坤,申志亮,刘刚,等.循环加卸载中滞回环与弹塑性应变能关系研究[J].岩石力学与工程学报,2014,33(9):1791-1797.XIAO Fukun,SHEN Zhiliang,LIU Gang,et al.Relationship between hysteresis loop and elas-to-plastic strain energy during cyclic loading and unloading[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(9):1791-1797.
    [22]GB 50123/T-99,土工试验方法标准[S].GB 50123/T-99,Standard for soil test method[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700