用户名: 密码: 验证码:
风力机尾流扰动对大气底层边界层的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Wind Turbine Tail Flow Disturbance on the Atmospheric Bottom Boundary Layer
  • 作者:吴正人 ; 李非 ; 路婷婷 ; 刘梅
  • 英文作者:WU Zhengren;LI Fei;LU Tingting;LIU Mei;School of Energy Power and Mechanical Engineering, North China Electric Power University;Department of Economics and Management, North China Electric Power University;
  • 关键词:风力机 ; 温度层结 ; 湍流扰动 ; 气候效应
  • 英文关键词:wind turbine;;temperature stratification;;turbulence disturbance;;climate effect
  • 中文刊名:ZGDL
  • 英文刊名:Electric Power
  • 机构:华北电力大学能源与动力工程学院;华北电力大学经济管理系;
  • 出版日期:2018-06-05
  • 出版单位:中国电力
  • 年:2018
  • 期:v.51;No.595
  • 基金:中央高校基本科研业务费专项资金资助项目(2015MS114)~~
  • 语种:中文;
  • 页:ZGDL201806023
  • 页数:6
  • CN:06
  • ISSN:11-3265/TM
  • 分类号:148-153
摘要
风力机尾流湍流特性及其对大气底层边界层的影响至关重要,采用雷诺平均N-S方程(RANS)对5 MW单台风力机在相同速度廓线不同温度层结下的尾流进行数值模拟,分析风力机下游速度、温度和湍流强度气象因素在不同设置下的变化及特征,得到风力机运行对大气底层边界层的影响机理,为高效率风电场的建立提供一定的理论基础。研究表明:气流经过风力机后,速度明显衰减,且在轮毂附近衰减最大;不同稳定层结下的温度变化差异大;同时风力机叶片旋转产生的涡相互影响,使得湍流扰动加强。
        The turbulent characteristics of wind turbine tail flow and its influence on the lower boundary layer of the atmosphere are of great importance. In this paper, the tail flow of single 5 MW wind turbine under the same velocity profile but different temperature layers is numerically simulated by using Reynolds Average N-S equation(RANS). By analyzing the variation and characteristics of the meteorological factors of wind turbine downstream velocity, temperature and turbulence intensity in different settings, the influence mechanism of wind turbine operation on the lower boundary layer of atmosphere is obtained, which provides certain theoretical basis for the establishment of high efficiency wind farm. The results show that the wind flow velocity decreases significantly after passing through the wind turbine with the maximum attenuation occurrence near the hub. The temperature varies greatly under different stable layers. Meanwhile, the vortex produced by the blade rotation of the wind turbine interacts with each other, which will intensify the turbulence disturbance.
引文
[1]刘磊.大规模风电场建成后对风能资源的影响及其环境效应研究[D].北京:中国科学院研究生院,2012.
    [2]胡菊.大型风电场建设对区域气候影响的数值模拟研究[D].兰州:兰州大学,2012
    [3]SU S,LIU G,WANG N,et al.Implication of climate change induced variation in wind extremes on wind farm in mountainous area of central China-A case study of hengshan[J].Energy Procedia,2014,61:2262-2266.
    [4]郑祚芳,高华,刘伟东.北京地区近地层风能资源的气候变异及下垫面改变的影响[J].太阳能学报,2014,35(5):881-886.ZHENG Zuofang,GAO Hua,LIU Weidong.Influence of climate change and human activities of the near-surface wind energy potential over Beijing[J].Acta Energiae Solaris Sinica,2014,35(5):881-886.
    [5]LU H,PORTé-AGEL F.On the impact of wind farms on a convective atmospheric boundary layer[J].Boundary-Layer Meteorology,2015,157(1):1-16.
    [6]吴正人,刘维维,王松岭.风力发电对局地气候的潜在影响分析[J].中国电力,2014,47(6):101-105.WU Zhengren,LIU Weiwei,WANG Songling.Analysis of potential impacts of wind power generation on local climate[J].Electric Power,2014,47(6):101-105.
    [7]SHAMSODDIN S,PORTé-AGEL F.Large-eddy simulation of atmospheric boundary-layer flow through a wind farm sited on topography[J].Boundary-Layer Meteorology,2016:1-17.
    [8]MARKFORT C D,ZHANG W,PORTé-AGEL F.Analytical model for mean flow and fluxes of momentum and energy in very large wind farms[J].Boundary-Layer Meteorology,2018,166(1):1-19.
    [9]KEITH D W,DECAROLIS J F,DENKENBERGER D C,et al.The influence of large-scale wind power on global climate[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(46):16115-16120.
    [10]BAIDYA R S,TRAITEUR J J.Impacts of wind farms on surface air temperatures[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(42):17899-17904.
    [11]WALSH-THOMAS J M,CERVONE G,AGOURIS P,et al.Further evidence of impacts of large-scale wind farms on land surface temperature[J].Renewable and Sustainable Energy Reviews,2012,16(8):6432-6437.
    [12]PORTé-AGEL F,WU Y T,LU H,et al.Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms[J].Journal of Wind Engineering and Industrial Aerodynamics,2011,99(4):154-168.
    [13]WANG C,PRINN R G.Potential climatic impacts and reliability of very large-scale wind farms[J].Atmospheric Chemistry and Physics,2010,10(4):2053-2061.
    [14]MEHTA D,ZUIJLEN A H V,KOREN B,et al.Large eddy simulation of wind farm aerodynamics:A review[J].Journal of Wind Engineering&Industrial Aerodynamics,2014,133:1-17.
    [15]S?RENSEN N N,BECHMANN A,RéTHORéP E,et al.Near wake reynolds-averaged navier-stokes predictions of the wake behind the MEXICO rotor in axial and yawed flow conditions[J].Wind Energy,2012,17(1):75-86.
    [16]刘雄,陈严,叶枝全.水平轴风力机气动性能计算模型[J].太阳能学报,2005,26(6):792-800.LIU Xiong,CHEN Yan,YE Zhiquan.Research on the aerodynamic performance prediction model for horizontal axis wind turbine[J].Acta Energiae Solaris Sinica,2005,26(6):792-800.
    [17]周绍毅,焦明,李强.华银铝厂厂区边界层温度层结特征分析[J].气象研究与应用,2005,26(4):23-26.ZHOU Shaoyi,JIAO Ming,LI Qiang.The characteristic analysis for the temperature level knot of boundary layer in Huayin aluminum factory district[J].Journal of Guangxi Meeteorology,2005,26(4):23-26.
    [18]王松岭,靳超然,刘梅,等.风力机运行对近地层风速及湍动能影响的研究[J].电力科学与工程,2015(10):70-73.WANG Songling,JIN Chaoran,LIU Mei,et al.Numerical study on the influence of wind turbine on wind speed and turbulent kinetic energy in surface layer[J].Electric Power Science and Engineering,2015(10):70-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700