用户名: 密码: 验证码:
蔗糖调控下采用冰冻铸造法制备多孔陶瓷的微观组织与力学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure and Mechanical Property of Porous Ceramics Prepared by Freeze-casting Method Under Regulation of Sucrose
  • 作者:郑韬 ; 虎小兵 ; 申洁楠 ; 游家学 ; 王理林 ; 王志军 ; 李俊杰 ; 王锦程
  • 英文作者:ZHENG Tao;HU Xiaobing;SHEN Jienan;YOU Jiaxue;WANG Lilin;WANG Zhijun;LI Junjie;WANG Jincheng;State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University;School of Materials Science and Engineering, Xi′an University of Technology;
  • 关键词:冰冻铸造法 ; 蔗糖 ; 组织形态调控 ; 力学性能
  • 英文关键词:freeze-casting;;sucrose;;regulation of microstructure;;mechanical property
  • 中文刊名:GXYB
  • 英文刊名:Journal of the Chinese Ceramic Society
  • 机构:西北工业大学材料学院凝固技术国家重点实验室;西安理工大学材料科学与工程学院;
  • 出版日期:2018-03-15 14:29
  • 出版单位:硅酸盐学报
  • 年:2018
  • 期:v.46;No.351
  • 基金:陕西省自然基金(2017JM5112);; 国家自然科学基金(51701155)资助
  • 语种:中文;
  • 页:GXYB201806007
  • 页数:7
  • CN:06
  • ISSN:11-2310/TQ
  • 分类号:37-43
摘要
基于冰冻铸造法,采用自主设计的定向凝固装置制备了孔隙率为66.79%的多孔Al_2O_3陶瓷,探究了不同蔗糖含量对多孔陶瓷微观组织形态的调控规律,发现蔗糖能将小面生长的冰晶改变成非小面生长,从而将层状多孔结构改变为蜂窝状结构,基于这一微观组织的改变和SEM表征,探究了蔗糖含量对多孔陶瓷力学性能的影响规律。结果表明:随着蔗糖含量的增加,多孔陶瓷的微观组织逐渐由层片状向蜂窝状转变,试样的抗压强度呈先升高后降低的趋势,蔗糖浓度由0%(质量分数)增加到1%时,抗压强度由18.90 MPa提高到22.24 MPa,并在蔗糖为含量时达到最大,为25.87 MPa,继续增大蔗糖浓度,抗压强度在蔗糖含量为7.5%和10.0%时分别下降到22.42和21.32 MPa。力学性能变化的原因在于:随着蔗糖含量的增加(0~5%),层状多孔结构中陶瓷桥的数量增加,使其抗压强度升高;试样中,蜂窝状多孔区和层片状多孔区存在区域边界,边界能有效地限制裂纹在不同区域的扩展。
        Porous Al_2O_3 ceramics were prepared by a self-designed directional solidification device based on the freeze-casting principle. The effect of sucrose content on the microstructures of porous ceramics was investigated. The results show that sucrose can change the faceted growth of ice crystals into non-faceted growth and the layered porous structure into cellular porous structure. The microstructures of porous ceramics gradually change from lamellar to cellular with the increase of sucrose content, and the compressive strength of the samples firstly increases and then decreases. The compressive strength increases from 18.90 to 22.24 MPa as sucrose content is increased from 0%(mass fraction) to 1%, and the maximum strength, 25.87 MPa, is obtained when sucrose content is 5%, and then the compressive strength decreases from 22.42 to 21.32 MPa when sucrose content is decreased from 7.5% to 10.0%. The mechanism is that the number of ceramic bridges in the layered porous structure increases, leading to the increase of the compressive strength, and there are regional boundaries between the cellular porous region and the lamellar porous region, and the boundaries can effectively obstruct the propagation of the crack between different regions when sucrose content increases from 0% to 5%.
引文
[1]DEVILLE S.Ice-templating,freeze casting:Beyond materials processing[J].J Mater Res,2013,28(17):2202–2219.
    [2]曾令可.多孔功能陶瓷制备与应用[M].化学工业出版社,2006.
    [3]LIU S,LI K,HUGHES R.Preparation of porous aluminium oxide(Al2O3)hollow fibre membranes by a combined phase–inversion and sintering method[J].Ceram Int,2003,29(8):875–881.
    [4]ZHU X W,JIANG D L,TAN S H.Impregnating process of reticulated porous ceramics using polymeric sponges as the templates[J].J Inorg Mater(in Chinese),2001,16(6):1144–1150.
    [5]PABST W,GREGOROVáE,MALANGRéD,et al.Elastic properties and damping behavior of alumina-zirconia composites at room temperature[J].Ceram Int,2012,38(7):5931–9.
    [6]DEVILLE S,SAIZ E,TOMSIA A P.Ice-templated porous alumina structures[J].Acta Mater,2007,55(6):1965–1974.
    [7]石存兰,薛文东,刘晓光,等.冻干法制备多孔氮化硼陶瓷及其成孔机理[J].硅酸盐学报,2015,43(12):1701–1705.SHI Cunlan,XUE Wendong,LIU Xiaoguang,et al.J Inorg Mater,2015,43(12):1701–1705.
    [8]ZHAO J,LI Y,WU Y,et al.Microstructure of Ti O2 porous ceramics by freeze casting of nanoparticle suspensions[J].Ceram Int,2017,43(17):14593–14598.
    [9]张妍.定向多孔HA/BT复合生物陶瓷的制备,调控及性能研究[D].长沙:中南大学,2013.ZHANG Yan.Fabricating,manipulation and property of HA/BT bioconposites with aligned porous structure(in Chinese,dissertation).Changsha:Central South University,2013.
    [10]NISHIHARA H,MUKAI S R,YAMASHITA D,et al.Ordered macroporous silica by ice templating[J].Chem Mater,2005,17(3):683–689.
    [11]LIU X,WU J,LUO B,et al.Porous Cu foams with oriented pore structure by freeze casting[J].Mater Lett,2017,205:249–252.
    [12]DEVILLE S.Freeze-casting of porous ceramics:a review of current achievements and issues[J].Adv Eng Mater,2008,10(3):155–169.
    [13]ZHANG Y,ZUO K,ZENG Y P.Effects of gelatin addition on the microstructure of freeze-cast porous hydroxyapatite ceramics[J].Ceram Int,2009,35(6):2151–2154.
    [14]MUNCH E,SAIZ E,TOMSIA A P,et al.Architectural control of freeze-cast ceramics through additives and templating[J].J Am Ceram Soc,2009,92(7):1534–1539.
    [15]TANG Y,ZHAO K,WEI J,et al.Fabrication of aligned lamellar porous alumina using directional solidification of aqueous slurries with an applied electrostatic field[J].J Eur Ceram Soc,2010,30(9):1963–1965.
    [16]PORTER M M,YEH M,STRAWSON J,et al.Magnetic freeze casting inspired by nature[J].Mater Sci Eng:A,2012,556:741–750.
    [17]REN L,ZENG Y P,JIANG D.Preparation of porous Ti O2 by a novel freeze casting[J].Ceram Int,2009,35(3):1267–1270.
    [18]ZUO K H,ZENG Y P,JIANG D.Effect of polyvinyl alcohol additive on the pore structure and morphology of the freeze–cast hydroxyapatite ceramics[J].Mater Sci Eng:C,2010,30(2):283–287.
    [19]YOU J,WANG L,WANG Z,et al.In situ observation the interface undercooling of freezing colloidal suspensions with differential visualization method[J].Rev Sci Instrum,2015,86(8):084901.
    [20]DEVILLE S.The lure of ice-templating:recent trends and opportunities for porous materials[J].Scripta Mater,2017,10.1016.
    [21]王贤斌,林鑫,王理林,等.晶体取向对定向凝固枝晶生长的影响[J].物理学报,2013,62(10):108103–108103–6.WANG Xianbin,LIN Xin,WANG Lilin,et.al.Acta Phys Sin(in Chinese),2013,62(10):108103–108103–6.
    [22]BUTLER M F.Instability formation and directional dendritic growth of ice studied by optical interferometry[J].Cryst Growth Des,2001,1(3):213–223.
    [23]BUTLER M F.Growth of solutal ice dendrites studied by optical interferometry[J].Cryst Growth Des,2002,2(1):59–66.
    [24]沈厚发,BECKERMANN C.糊状区变形及浓度再分布的模拟实验[J].金属学报,2002,38(4):352–358.SHEN Houfa,BECKERMANN C.Acta Metall Sin(in Chinese),2002,38(4):352–358.
    [25]FLEISCHLI F D,DIETIKER M,BORGIA C,et al.The influence of internal length scales on mechanical properties in natural nanocomposites:a comparative study on inner layers of seashells[J].Acta Biomater,2008,4(6):1694–1706.
    [26]LUZ G M,MANO J F.Biomimetic design of materials and biomaterials inspired by the structure of nacre[J].Phil Trans R Soc A,2009,367(1893):1587–1605.
    [27]孙艳荣,范涛,黄勇,等.羟基磷灰石生物陶瓷材料的研究趋势及展望[J].硅酸盐学报,2010,38(6):1145–1150.SUN Yanrong,FAN Tao,HUANG Yong,et al.J Chin Ceram Soc(in Chinese),2010,38(6):1145–1150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700