用户名: 密码: 验证码:
预混湍流火焰面褶皱结构网络拓扑研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Network topology analysis on wrinkled structure of turbulent premixed Bunsen flame
  • 作者:王金华 ; 聂要辉 ; 常敏 ; 张猛 ; 黄佐华
  • 英文作者:Wang Jinhua;Nie Yaohui;Chang Min;Zhang Meng;Huang Zuohua;School of Energy and Power Engineering,Xi′an Jiaotong University;
  • 关键词:预混湍流火焰 ; 褶皱结构 ; 网络拓扑分析 ; 曲率PDF分布 ; 火焰不稳定
  • 英文关键词:turbulent premixed flame;;folded region;;network topology analysis;;PDF distribution;;DL instability
  • 中文刊名:LTLC
  • 英文刊名:Journal of Experiments in Fluid Mechanics
  • 机构:西安交通大学能源与动力工程学院;
  • 出版日期:2018-02-15
  • 出版单位:实验流体力学
  • 年:2018
  • 期:v.32;No.141
  • 基金:国家自然科学基金(51776164,91441203);; 天津大学内燃机燃烧学国家重点实验室开放课题(K2017-03);; 激光与物质相互作用国家重点实验室开放课题(SKLLIM1508)
  • 语种:中文;
  • 页:LTLC201801003
  • 页数:8
  • CN:01
  • ISSN:11-5266/V
  • 分类号:21-27+65
摘要
湍流火焰结构是表征湍流与火焰相互作用的组分、速度、温度等标量场信息,理解湍流与火焰相互作用规律,验证和发展湍流燃烧模型的实验基础。针对传统曲率PDF分布反映湍流火焰面褶皱结构失准问题,利用网络拓扑结构方法可以标记系统关键节点和特征结构,构建湍流火焰面的拓扑结构。本文标记了湍流火焰面上的关键褶皱结构,分析了湍流与火焰的作用规律,结果表明:低湍流强度下,湍流火焰面的关键褶皱结构由火焰自身不稳定性引起;当湍流强度增大,湍流火焰面的关键褶皱结构由湍流尺度决定。在本生灯湍流火焰中,火焰自身不稳定性引起的火焰褶皱与火焰发展距离有关。在本生灯火焰底部,火焰自身不稳定性不引起火焰面褶皱,随着火焰向下游发展,其对火焰面影响逐渐增大,火焰褶皱程度增加。
        Turbulent flame structure represents the species,velocity and temperature field in the turbulent combustion,which reflects the interaction between the turbulence and the combustion.It is also important for combustion model validation.The conventional PDF of curvature method can not accurately reflect the folded regions in the turbulent flame,while the network topology analysis can demonstrate these regions as it can mark the key nodes or structure in a system.In this paper,the network structure of the turbulent premixed Bunsen flame is constructed to trace the folded regions in turbulent flames.Results show that the folded regions can be traced by network structure.These regions are mainly caused by DL instability in weak turbulence,while they are mainly affected by turbulence vortex wrinkling as turbulence intensity increases.The influence of DL instability on turbulent premixed Bunsen flames is constrained by flame development.At the bottom of Bunsen flame,the DL instability does not wrinkle the flame.As the flame propagates to the downstream,the flame becomes more wrinkled due to DL instability.
引文
[1]Peters N.Turbulent combustion[M].Cambridge University Press,2000.
    [2]Tamadonfar Parsa,Gülder9mer L.Flame brush characteristics and burning velocities of premixed turbulent methane/air Bunsen flames[J].Combustion and Flame,2014,161(12):3154-3165.
    [3]Fragner R,Halter F,Mazellier N,et al.Investigation of pressure effects on the small scale wrinkling of turbulent premixed Bunsen flames[J].Proceedings of the Combustion Institute,2015,35(2):1527-1535.
    [4]Poludnenko A Y,Oran E S.The interaction of high-speed turbulence with flames:Global properties and internal flame structure[J].Combustion and Flame,2010,157(5):995-1011.
    [5]Lipatnikov A N,Chomiak J.Effects of premixed flames on turbulence and turbulent scalar transport[J].Progress in Energy and Combustion Science,2010,36(1):1-102.
    [6]Nishiki S.Modeling of flame-generated turbulence based on direct numerical simulation databases[J].Proceedings of the Combustion Institute,2002,29:2017-2022.
    [7]Lipatnikov A N,Chomiak J.Turbulent flame speed and thickness:phennomenology,evaluation,and application in multi-dimensional simulations[J].Progress in Energy&Combustion Science,2002,28:1-74.
    [8]Fureby C.A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion[J].Proceedings of the Combustion Institute,2005,30(1):593-601.
    [9]Cintosun Esen,Smallwood Gregory J,Gülder9mer L.Flame surface fractal characteristics in premixed turbulent combustion at high turbulence intensities[J].AIAA Journal,2007,45(11):2785-2789.
    [10]Bradley D.Application of a reynolds stress,stretched flamelet,mathematical model to computations of turbulent burning velocities andcomparison with experiments[J].Combustion&Flame,1994,96:221-248.
    [11]Yeung P K.Lagrangian statistics from direct numerical simulations of isotropic turbulence[J].Journal of Fluid Mechanics,1989,207:531-586.
    [12]Pope S.Lagrangian PDF methods for turbulent flows[J].Annu Rev Fluid Mech,1994,26:23-63.
    [13]Chaudhuri S.Life of flame particles embedded in premixed flames interacting with near isotropic turbulence[J].Proceedings of the Combustion Institute,2015,35(2):1305-1312.
    [14]Chen H J.The mechanism of two-dimensional pocket formation in lean premixed methane-air flames with implications to turbulent combustion[J].Combustion&Flame,1999:15-48.
    [15]Liu C,Zhou W X,Yuan W K.Statistical properties of visibility graph of energy dissipation rates in three-dimensional fully developed turbulence[J].Physica A:Statistical Mechanics and its Applications,2010,389(13):2675-2681.
    [16]Murugesan Meenatchidevi,Sujith R I.Combustion noise is scale-free:transition from scale-free to order at the onset of thermoacoustic instability[J].Journal of Fluid Mechanics,2015,772:225-245.
    [17]张猛,王金华,谢永亮,等.利用OH_PLIF测量CH4/H2/空气混合气湍流燃烧速率[J].燃烧科学与技术,2013,19(6):512-516.Zhang M,Wang J H,Xie Y L,et al.Measurement of turbulent burning velocity of CH4/H2/Air mixtures using OH-PLIF[J].Journal of Combustion Science and Technology,2013,19(6):512-516.
    [18]Zhang M,Wang J H,Wu J,et al.Flame front structure of turbulent premixed flames of syngas oxyfuel mixtures[J].International Journal of Hydrogen Energy,2014,39(10):5176-5185.
    [19]Kobayashi H,Tamura T,Maruto K,et al.Burning velocity of turbulent premixed flames in a high pressure environment[J].Proceedings of the Combustion Institute,1996,26(1):389-396.
    [20]张猛,王金华,俞森彬,等.自适应阈值二值法提取湍流火焰前锋面结构[J].燃烧科学与技术,2016,22(3):212-217.Zhang M,Wang J H,Yu S B,et al.Flame front tracking of turbulent premixed flames using adaptive threshold binarization[J].Journal of Combustion Science and Technology,2016,22(3):212-217.
    [21]Luque B,Lacasa L,Ballesteros F,et al.Horizontal visibility graphs:Exact results for random time series[J].Physical Review E Statistical Nonlinear&Soft Matter Physics,2009,80(2):046103.
    [22]Bresenham J E.Algorithm for computer control of a digital plotter[J].IBM Systems Journal,1965,4(1):25-30.
    [23]Barabasi A L,Albert R.Emergence of scaling in random networks[J].Science,1999,286(5439):509.
    [24]Hamlington P E,Poludnenko A Y,Oran E S.Interactions between turbulence and flames in premixed reacting flows[J].Physics of Fluids,2011,23(12):125111.
    [25]Chakraborty N,Klein M,Swaminathan N.Effects of lewis number on the reactive scalar gradient alignment with local strain rate in turbulent premixed flames[J].Proceedings of the Combustion Institute,2009,32(1):1409-1417.
    [26]Fruchterman T M J,Reingold E M.Graph drawing by force-directed placement[J].Software Practice&Experience,2010,21(11):1129-1164.
    [27]Scholz M.Node similarity as a basic principle behind connectivity in complex networks[J].Computer Science,2015:1-7.
    [28]Boyer L,Quinard J.On the dynamics of anchored flames[J].Combustion&Flame,1990,82(1):51-65.
    [29]Lieuwen T.Local consumption speed of turbulent premixed flames-An analysis of“memory effect”[J].Combustion&Flame,2010,157:955-965.
    [30]Clavin P,Williams F A.Theory of premixed-flame propagation in large-scale turbulence[J].Journal of Fluid Mechanics,2006,90(3):589-604.
    [31]Aldredge R C,Williams F A.Influence of wrinkled premixedflame dynamics on large-scale,low-intensity turbulent flow[J].Journal of Fluid Mechanics,2006,228(228):487-511.
    [32]Tamadonfar Parsa,Gülder9mer L.Effects of mixture composition and turbulence intensity on flame front structure and burning velocities of premixed turbulent hydrocarbon/air Bunsen flames[J].Combustion and Flame,2015,162(12):4417-4441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700