用户名: 密码: 验证码:
超低排放背景下烟气消白技术路线研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on wet flue gas plume elimination technology in the context of ultra low emission
  • 作者:谭厚章 ; 刘兴 ; 王文慧 ; 刘鹤欣
  • 英文作者:TAN Houzhang;LIU Xing;WANG Wenhui;LIU Hexin;Institute of Zhejiang Xi’an Jiaotong University;School of Energy and Power Engineering,Xi’an Jiaotong University;
  • 关键词:湿法脱硫 ; 湿烟羽消除 ; 烟气加热 ; 烟气冷凝 ; 空气加热混合
  • 英文关键词:wet desulphurization;;wet plume elimination;;flue gas heating;;flue gas condensation;;mixing air heating
  • 中文刊名:JJMS
  • 英文刊名:Clean Coal Technology
  • 机构:浙江西安交通大学研究院;西安交通大学能源与动力工程学院;
  • 出版日期:2019-03-15
  • 出版单位:洁净煤技术
  • 年:2019
  • 期:v.25;No.120
  • 基金:浙江省重点研发计划资助项目(2018C03036)
  • 语种:中文;
  • 页:JJMS201902005
  • 页数:7
  • CN:02
  • ISSN:11-3676/TD
  • 分类号:40-46
摘要
超低排放背景下燃煤电厂大多采用湿法脱硫装置,装置出口饱和湿烟气排放后一般会在烟囱出口形成湿烟羽,对生态环境及人体健康造成不利影响。本文基于切线法对烟气及环境空气状态进行计算,确定湿烟羽消除的临界温度及混合空气当量比,比较不同烟气消白技术路线的适用环境条件及技术参数。研究结果表明,环境温度越低、相对湿度越高,湿烟羽消除难度越大。环境相对湿度为60%,脱硫塔出口烟气温度为50℃时,不采用任何措施的前提下可实现无湿烟羽排放的临界环境温度为37. 3℃,可见在常见环境条件下,调整湿法脱硫装置出口烟气状态参数以消除湿烟羽是有必要的。假设可适用的烟气最大降温幅度为30℃,最大升温幅度为30℃,仅采用烟气加热技术可消除湿烟羽的临界环境温度为12. 9℃;仅采用烟气冷凝技术可消除湿烟羽的临界环境温度为8. 7℃;采用烟气冷凝再热技术可消除湿烟羽的临界环境温度为-12. 9℃。对于空气加热混合技术,基于切线法对空气烟气混合过程进行热平衡计算,确定可消除湿烟羽的临界空气当量比。将烟气加热、烟气冷凝及空气加热技术组合使用可拓宽烟气消白适用的环境条件。
        Wet desulphurization device is widely applied in coal fired power plant in the context of ultra low emission.The saturated wet flue gas emitted from the device outlet usually form wet plume at the chimney outlet,resulting in adverse effects on ecological environment and human health.In this paper,the state of flue gas and ambient air were calculated to determine the critical temperature of wet plume removal and the equivalent ratio of mixed air,and the applicable environmental conditions and technical parameters of different flue gas blanking technology routes were compared based on the tangential method.The result shows that the wet plume is more difficult to be eliminated with lower environment temperature and higher relative humidity.If the relative humidity is 60% and the flue gas temperature at the outlet of the wet desulphurization tower is 50 ℃,the critical temperature of 37.3 ℃ for wet plume elimination can be realized without any measures.So the flue gas parameters of the wet desulfurization unit should be adjusted for wet plume elimination under ordinary environment conditions.Assuming that the maximum cooling amplitude of applicable flue gas is 30 ℃ and the maximum warming amplitude is 30 ℃,the critical environment temperature of smoke plume elimination is 12.9 ℃ only by flue gas heating technology,while the critical environment temperature of smoke plume elimination is 8. 7 ℃ only by flue gas condensation technology and the critical environment temperature of smoke plume elimination is -12.9 ℃ by both flue gas condensation and heating technology.For air heating mixing technology,the heat balance of the air and flue gas mixing process was calculated to determine the critical air equivalent ratio of wet plume elimination based on the tangent method.The combination of flue gas heating,flue gas condensation and air heating technology can enlarge the applicable environmental conditions of wet flue gas plume elimination.
引文
[1]史文峥,杨萌萌,张绪辉,等.燃煤电厂超低排放技术路线与协同脱除[J].中国电机工程学报,2016,36(16):4308-4318,4513.SHANG Wenzheng,YANG Mengmeng,ZHANG Xuhui,et al.Ultra-low emission technical route of coal-fired power plants and the cooperative removal[J].Proceedings of the CSEE,2016,36(16):4308-4318,4513.
    [2]朱杰,许月阳,姜岸,等.超低排放下不同湿法脱硫协同控制颗粒物性能测试与研究[J].中国电力,2017,(1):168-172.ZHU Jie,XU Yueyang,JIANG An,et al.Test and study on performance of wet FGD coordinated particulate matter control for ultralow pollutants emission[J].Electric Power,2017,(1):168-172.
    [3]王珲,宋蔷,姚强,等.电厂湿法脱硫系统对烟气中细颗粒物脱除作用的实验研究[J].中国电机工程学报,2008,28(5):1-7.WANG Hui,SONG Qiang,YAO Qiang,et al.Experimental study on removal effect of wet flue gas desulfurization system on fine particles from a coal-fired power plant[J].Proceedings of the CSEE,2008,28(5):1-7.
    [4]LI Zhen,JIANG Jingkun,MA Zizhen,et al.Influence of flue gas desulfurization(FGD)installations on emission characteristics of PM2.5 from coal-fired power plants equipped with selective catalytic reduction(SCR)[J].Environ Pollut,2017,230:655-662.
    [5]龙时磊,曾建荣,刘可,等.逆温层在上海市空气颗粒物积聚过程中的作用[J].环境科学与技术,2013(S1):104-109.LONG Shilei,ZENG Jianrong,LIU Ke,et al.Impact of temperature inversion layer on accumulation process of particulate matters in Shanghai[J].Environmental Science&Technology,2013(S1):104-109.
    [6]邓长菊,尹晓惠,甘璐.北京雾与霾天气大气液态水含量和相对湿度层结特征分析[J].气候与环境研究,2014,19(2):193-199.DENG Changju,YIN Xiaohui,GAN Lu.Stratification characteristic analysis of atmospheric liquid water content and relative humidity during fog and haze weather in Beijing[J].Climatic and Environmental Research,2014,19(2):193-199.
    [7]张小玲,唐宜西,熊亚军,等.华北平原一次严重区域雾霾天气分析与数值预报试验[J].中国科学院大学学报,2014,31(3):337-344.ZHANG Xiaoling,TANG Yixi,XIONG Yajun,et al.Analysis and numerical forecast of a regional fog-haze in North China plain[J].Journal of University of Chinese Academy of Science,2014,31(3):337-344.
    [8]王晓敏,韩军彩,陈静,等.石家庄地区能见度变化特征及其与相对湿度和颗粒物浓度的关系[J].干旱气象,2016,34(4):648-655.WANG Xiaomin,HAN Juncai,CHEN Jing,et al.Variation characteristics of atmospheric visibility and their relationship with relative humidity and particle concentration in Shijiangzhuang of Hebei[J].Journal of Arid Meteorology,2016,34(4):648-655.
    [9]舒喜,杨爱勇,叶毅科,等.冷凝再热复合技术应用于燃煤电厂湿烟羽治理的可行性分析[J].环境工程,2017(12):82-85.SHU Xi,YANG Aiyong,YE Yike,et al.Feasibility analysis of the condensation and reheating composite technology applied to the west plume control in coal fired poer plant[J].Environmental Engineering,2017(12):82-85.
    [10]马修元,惠润堂,杨爱勇,等.湿烟羽形成机理与消散技术数值分析[J].科学技术与工程,2017,17(22):220-224.MA Xiuyuan,HUI Runtang,YANG Aiyong,et al.Numerical analysis of wet plume formation mechanism and dessipation technique[J].Science Technology and Engineering,2017,17(22):220-224.
    [11]朱高鹏,姚金海,邹昌宏,等.空气混合控制对冷却塔性能影响的分析与研究[J].洁净与空调技术,2016(4):35-37.ZHU Gaopeng,YAO Jinhai,ZOU Changhong,et al.Analysis and study on the influence of air mixture control on the performance of cooling tower[J].Contamination Control&Air-Conditioning Technology,2016(4):35-37.
    [12]李文艳,王冀星,车建炜.湿法脱硫烟气湿排问题分析[J].中国电机工程学报,2007,27(14):36-40.LI Wenyan,WANG Jixing,CHE Jianwei.Analysis on corresponding problems of WFGD flue gas wet emission[J].Proceedings of the CSEE,2007,27(14):36-40.
    [13]李再亮,邢岩岩,马成龙.管式热媒水烟气换热器(MGGH)技术在发电厂除尘提效和消除烟羽的研究与应用[J].黑龙江科技信息,2017(4):119.
    [14]谭厚章,熊英莹,王毅斌,等.湿式相变凝聚器协同多污染物脱除研究[J].中国电力,2017(2):128-134.TAN Houzhang,XIONG Yingying,WANG Yibin,et al.Study on synergistic removal of multi-pollutants by WPTA[J].Electric Power,2017(2):128-134.
    [15]刘华,周贤,付林.烟气与水冷凝换热影响因素实验研究[J].暖通空调,2015,45(7):90-95.LIU Hua,ZHOU Xian,FU Lin.Experimental study on influence factors of direct-contact flue-gas-water condensation heat exchange[J].Heating Ventilating&Air Conditioning,2015,45(7):90-95.
    [16]熊英莹,谭厚章.湿式相变冷凝除尘技术对微细颗粒物的脱除研究[J].洁净煤技术,2015,21(2):20-24.XIONG Yingying,TAN Houzhang.Influence of wet phase transition condensate dust removal technology on fine particle removal[J].Clean Coal Technology,2015,21(2):20-24.
    [17]王贵彦,黄素华.湿法脱硫燃煤机组“白色烟羽”节能治理[J].华电技术,2016,38(11):64-65.WANG Guiyan,HUANG Suhua.Wet desulfurization coal-fired unit"white smoke plume"energy saving treatment[J].Huadian Technology,2016,38(11):64-65.
    [18]周西华,梁茵,王小毛,等.饱和水蒸汽分压力经验公式的比较[J].辽宁工程技术大学学报,2007,26(3):331-333.ZHOU Xihua,LIANG Yin,WANG Xiaomao,et al.Comparision of saturation vapor pressure formulas[J].Journal of Liaoning Technical University,2007,26(3):331-333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700