用户名: 密码: 验证码:
亚热带典型流域C、N沉降季节变化特征及其耦合输出过程
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Seasonal variation characteristics and coupling output process of C and N wet deposition in a typical subtropical watershed in China
  • 作者:马明真 ; 高扬 ; 郝卓
  • 英文作者:MA Mingzhen;GAO Yang;HAO Zhuo;Key Laboratory of Ecosystem Network Observation and Modeling,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:亚热带流域 ; 湿沉降 ; 径流输出 ; C、N耦合及平衡
  • 英文关键词:subtropical watershed;;wet deposition;;rainfall-runoff export;;C and N coupling and input-output balance
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室;中国科学院大学;
  • 出版日期:2018-10-18 14:59
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金项目(31570465);国家自然科学基金中英合作重大项目(41571130043);; 中国科学院青年创新促进会项目
  • 语种:中文;
  • 页:STXB201902021
  • 页数:12
  • CN:02
  • ISSN:11-2031/Q
  • 分类号:204-215
摘要
大气湿沉降是流域生态系统水体中碳氮的重要来源,对生态系统的健康及稳定性有很大的影响。通过对江西千烟洲典型亚热带流域降雨过程的碳、氮湿沉降和径流过程的季节性动态特征进行监测分析,探讨流域沉降、径流输出的C、N耦合及平衡关系。结果表明:千烟洲香溪流域降雨径流中碳氮浓度明显低于雨水,流域大气降水中DOC浓度和TN浓度呈极显著正相关关系。香溪河流域常规水体C∶N均值为2.81,远低于根据Redfield比率得出的适宜浮游生物生长的C∶N(6.6左右),说明外源性N输入导致该流域水体环境处于N过量的状态,长期输出会提高下游鄱阳湖水系的营养化程度。降雨过程对流域碳输入输出平衡影响较小,对氮输入输出平衡的影响较大。流域湿沉降DOC年输入量为69.41 kg hm~(-2)a~(-1),TN湿沉降通量为77.23 kg hm~(-2)a~(-1),碳氮沉降水平受区域降雨量及空气污染情况控制。香溪流域生态系统截留的沉降TN占当地氮肥年均使用量的33.13%,大气降水对亚热带流域生态系统的大量营养物质输入不容忽视。
        Atmospheric wet deposition is an important source of carbon and nitrogen in watershed ecosystems and has a substantial effect on health and stability of ecosystems. In the typical subtropical Xiangxi watershed,seasonal dynamic characteristics of C and N in wet deposition and rainfall-runoff export events were monitored and analyzed to discuss C and N coupling processes and matter equilibrium relationships between deposition and rainfall-runoff export. The results showed that,in the process of rainfall and rainfall-runoff in the Xiangxi watershed,the monthly average concentrations of C and N had obvious seasonal differences. The C and N concentrations in atmospheric wet deposition were higher in the dry season than that in the wet season,and the values in rainfall-runoff were greatly affected by local agricultural activities,such as fertilization. The average concentrations of DOC and TN in atmospheric rainfall were 5. 28 mg/L and 5. 91 mg/L,respectively,and the concentrations of C and N in rainfall-runoff were significantly lower than that in rainwater. Between DOC and TN concentrations,there were very significant positive correlations in rainwater,no significant correlations inrainfall-runoff,and significant negative correlations in conventional water. Nutrient sources in each process were the main factors affecting the relationship between C and N. Because of the erosion to soil by heavy rainfall,C ∶ N in rainfall-runoff was obviously higher than that in conventional water. The ratio in rainwater was similar to that of conventional water,indicating that atmospheric wet deposition was the main source of C and N in the watershed. The main reason was that most of the rainfall events were small and medium rainfall in the Xiangxi watershed,and the annual rainfall had a limited effect on soil erosion. Therefore, C ∶ N in conventional water was almost unaffected by soil. The mean value of C ∶ N in conventional water in the Xiangxi watershed was 2.81,which was much lower than the suitable value(approximately 6.6)for plankton growth according to the Redfield ratio,indicating that exogenous N input had caused the water environment to be in a state of excess N in this watershed,and long-term output would increase the degree of nutrition of the downstream Poyang Lake. Rainfall processes had a small effect on C input-output balance but had a greater impact on N input-output balance in the Xiangxi watershed. The annual wet deposition fluxes of DOC and TN were 69.41 kg hm~(-2)a~(-1)and 77.23 kg hm~(-2)a~(-1),respectively. The level of C and N deposition was controlled by regional rainfall and air pollution. Deposition flux of TN in the Xiangxi watershed ecosystem accounted for 33.13% of the annual average nitrogen fertilizer application in this region. Therefore,the large number of nutrients input into subtropical watershed ecosystems by atmospheric rainfall cannot be neglected.
引文
[1] Kudrevatykh I Y. Assessment of the relationship between atmospheric deposition of mineral nitrogen and vegetation in forest ecosystems. Biology Bulletin,2017,44(2):210-217.
    [2]常运华,刘学军,李凯辉,吕金岭,宋韦.大气氮沉降研究进展.干旱区研究,2012,29(6):972-979.
    [3] Avery Jr. G B,Brown J L D,Willey J D,Kieber R J. Assessment of rainwater volatile organic carbon in southeastern North Carolina,USA.Atmospheric Environment,2009,43(16):2678-2681.
    [4] Kudrevatykh I Y,Ivashchenko K V,Ananyeva N D,Ivanishcheva E A. Atmospheric Nitrogen Deposition and the Properties of Soils in Forests of Vologda Region. Eurasian Soil Science,2018,51(2):153-162.
    [5] Willey J D,Kieber R J,Eyman M S,Avery Jr G B. Rainwater dissolved organic carbon:Concentrations and global flux. Global Biogeochemical Cycles,2000,14(1):139-148.
    [6] Bourgeois I,Savarino J,Némery J,Caillon N,Albertin S,Delbart F,Voisin D,Clément J-C. Atmospheric nitrate export in streams along a montane to urban gradient. Science of the Total Environment,2018,633:329-340.
    [7] Gao Q,Chen S,Kimirei I A,Zhang L,Mgana H,Mziray P,Wang Z D,Yu C,Shen Q S. Wet deposition of atmospheric nitrogen contributes to nitrogen loading in the surface waters of Lake Tanganyika,East Africa:a case study of the Kigoma region. Environmental Science and Pollution Research,2018,25(12):11646-11660.
    [8] Gao Y,Zhu B,Yu G R,Chen W L,He N P,Wang T,Miao C Y. Coupled effects of biogeochemical and hydrological processes on C,N,and P export during extreme rainfall events in a purple soil watershed in southwestern China. Journal of Hydrology,2014,511:692-702.
    [9]鄂馨卉,汪亚峰,高扬,陈利顶,陈世博,陈维梁.黄土高原降雨驱动下流域碳输移特征及其碳流失评估:以羊圈沟坝系流域为例.环境科学,2017,38(8):3264-3272.
    [10]徐彩丽,罗春乐,薛跃君,葛田田,王旭晨.山东省降雨和降雪中溶解有机碳、溶解无机碳和总氮的浓度变化及来源分析.环境科学学报,2016,36(2):658-666.
    [11] Ma X L,Liu G M,Wu X D,Smoak J M,Ye L L,Xu H Y,Zhao L,Ding Y J. Influence of land cover on riverine dissolved organic carbon concentrations and export in the Three Rivers Headwater Region of the Qinghai-Tibetan Plateau. Science of the Total Environment,2018,630:314-322.
    [12] Raymond P A,Bauer J E. Riverine export of aged terrestrial organic matter to the North Atlantic Ocean. Nature,2001,409(6819):497-500.
    [13] Pan Y P,Wang Y S,Xin J Y,Tang G Q,Song T,Wang Y H,Li X R,Wu F K. Study on dissolved organic carbon in precipitation in Northern China. Atmospheric Environment,2010,44(19):2350-2357.
    [14] Evans C D,Monteith D T,Cooper D M. Long-term increases in surface water dissolved organic carbon:observations,possible causes and environmental impacts. Environmental Pollution,2005,137(1):55-71.
    [15] Zhan X,Bo Y,Zhou F,Liu X J,Paerl H W,Shen J L,Wang R,Li F R,Tao S,Dong Y J,Tang X Y. Evidence for the importance of atmospheric nitrogen deposition to eutrophic Lake Dianchi,China. Environmental Science&Technology,2017,51(12):6699-6708.
    [16] Camargo J A,Alonso A. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems:A global assessment. Environment International,2006,32(6):831-849.
    [17] Diez B,Nieuwerburgh L V,Snoeijs P. Water nutrient stoichiometry modifies the nutritional quality of phytoplankton and somatic growth of crustacean mesozooplankton. Marine Ecology Progress Series,2013,489:93-105.
    [18] Hao Z,Gao Y,Yang T T. Seasonal variation of DOM and associated stoichiometry for freshwater ecosystem in the subtropical watershed:Indicating the optimal C∶N:P ratio. Ecological Indicators,2017,78:37-47.
    [19]王小治,朱建国,高人,宝川靖和.太湖地区氮素湿沉降动态及生态学意义:以常熟生态站为例.应用生态学报,2004,15(9):1616-1620.
    [20]刘畅,唐国勇,童成立,夏海鳌,蒋平,林蕴华.不同施肥措施下亚热带稻田土壤碳、氮演变特征及其耦合关系.应用生态学报,2008,19(7):1489-1493.
    [21]江叶枫,郭熙,孙凯,饶磊,李婕,王澜珂,叶英聪,李伟峰.江西省耕地土壤碳氮比空间变异特征及其影响因素.环境科学,2017,38(9):3840-3850.
    [22]韩宁,陈维梁,高扬,郝卓,于贵瑞.基于SWAT与DNDC模型对比研究亚热带流域氮淋溶与输出过程.环境科学,2017,38(6):2317-2325.
    [23] Huang Y L,Lu X X,Chen K. Wet atmospheric deposition of nitrogen:20 years measurement in Shenzhen City,China. Environmental Monitoring and Assessment,2013,185(1):113-122.
    [24]郝卓,高扬,张进忠,徐亚娟,于贵瑞.南方红壤区氮湿沉降特征及其对流域氮输出的影响.环境科学,2015,36(5):1630-1638.
    [25] Hu Z Y,Wang G X,Sun X Y. Precipitation and air temperature control the variations of dissolved organic matter along an altitudinal forest gradient,Gongga Mountains,China. Environmental Science and Pollution Research,2017,24(11):10391-10400.
    [26]邹宇,邓雪娇,李菲,王伯光,谭浩波,邓涛,麦博儒,刘显通.广州大气中异戊二烯浓度变化特征、化学活性和来源分析.环境科学学报,2015,35(3):647-655.
    [27] Nanus L,McMurray J A,Clow D W,Saros J E,Blett T,Gurdak J J. Spatial variation of atmospheric nitrogen deposition and critical loads for aquatic ecosystems in the Greater Yellowstone Area. Environmental Pollution,2017,223:644-656.
    [28]吕茂奎,谢锦升,江淼华,罗水金,曾少娟,纪淑蓉,万菁娟,杨玉盛.米槠常绿阔叶次生林和杉木人工林穿透雨和树干径流可溶性有机质浓度和质量的比较.应用生态学报,2014,25(8):2201-2208.
    [29]罗艳,周国逸,张德强,官丽莉,欧阳学军,褚国伟.鼎湖山三种主要林型水文学过程中总有机碳浓度对比.生态学报,2004,24(12):2973-2978.
    [30] Bayarsaikhan U,Ruhl A S,Jekel M. Characterization and quantification of dissolved organic carbon releases from suspended and sedimented leaf fragments and of residual particulate organic matter. Science of the Total Environment,2016,571:269-274.
    [31]石国华.陆地生态系统溶解性有机碳的时空分布格局与通量估算[D].咸阳:西北农林科技大学,2017.
    [32] Tian Y Q,Yu Q,Feig A D,Ye C J,Blunden A. Effects of climate and land-surface processes on terrestrial dissolved organic carbon export to major U. S. coastal rivers. Ecological Engineering,2013,54:192-201.
    [33] Hru2ka J,Krám P,McDowell W H,Oulehle F. Increased dissolved organic carbon(DOC)in Central European streams is driven by reductions in ionic strength rather than climate change or decreasing acidity. Environmental Science&Technology,2009,43(12):4320-4326.
    [34] Singh N K,Reyes W M,Bernhardt E S,Bhattacharya,R,Meyer J L,Knoepp J D,Emanuel R E. Hydro-Climatological Influences on Long-Term Dissolved Organic Carbon in a Mountain Stream of the Southeastern United States. Journal of Environmental Quality,2016,45(4):1286-1295.
    [35] Brunet F,Potot C,Probst A,Probst J-L. Stable carbon isotope evidence for nitrogenous fertilizer impact on carbonate weathering in a small agricultural watershed. Rapid Communications in Mass Spectrometry,2011,25(19):2682-2690.
    [36]芮艳兰.滇池湖滨带浅层地下水脱氮技术中试研究[D].昆明:云南大学,2016.
    [37] Stoddard J L,Karl J S,Deviney F A,DeWalle D R,Driscoll C T,Herlihy A T. Response of surface water chemistry to the Clean Air Act Amendments of 1990. Report EPA 620/R-03/001. North Carolina:United States Environmental Protection Agency,2003.
    [38] David M,Vance G,Kahl J. Chemistry of dissolved organic carbon at bear brook watershed,Maine:stream water response to(NH4)2SO4additions. Environmental Monitoring and Assessment,1999,55(1):149-163.
    [39] Schindler D W,Bayley S E,Curtis P J,Parker B R,Stainton M P,Kelly C A. Natural and man-caused factors affecting the abundance and cycling of dissolved organic substances in precambrian shield lakes. Hydrobiologia,1992,229(1):1-21.
    [40] Hessen D O,Gjessing E T,Knulst J,Fjeld E. TOC fluctuations in a humic lake as related to catchment acidification,season and climate.Biogeochemistry,1997,36(1):139-151.
    [41] Satoh H,Okabe S,Norimatsu N,Watanabe Y. Significance of Substrate C/N Ratio on structure and activity of nitrifying biofilms determined by in situ hybridization and the use of microelectrodes. Journal of Japan Society on Water Environment,2000,41(4/5):317-321.
    [42]施沁璇,王俊,盛鹏程,罗毅志,吴琦芳,黄小红,叶雪平.淡水养殖池塘中水体碳氮比对养殖环境的影响.江苏农业科学,2017,45(21):186-189.
    [43]袁元,钟鸿雁.水生植物对水体pH值影响的原因探究.江西化工,2008,(2):62-64.
    [44]梁喜珍,李畅游,李兴,杨志岩.乌梁素海富营养化水体pH值与其他指标的相关性初探.中国农村水利水电,2009,(12):1-3,6-6.
    [45] Oliver R L,Ganf G G. Freshwater blooms//Whitton B A,Potts M,eds. The Ecology of Cyanobacteria. Dordrecht:Springer,2000:149-194.
    [46]赵联芳,朱伟,莫妙兴.沉水植物对水体pH值的影响及其脱氮作用.水资源保护,2008,24(6):64-67.
    [47] Redfield A C,Ketchum B H,Richards F A. The influence of organisms on the composition of sea-water. The Sea,1963,40(6):640-644.
    [48] Rapport D J,Whitford W G. How ecosystems respond to stress:Common properties of arid and aquatic systems. Bioscience,1999,49(3):193-203.
    [49]王茜,吴胜军,肖飞,薛怀平,任宪友.洪湖湿地生态系统稳定性评价研究.中国生态农业学报,2005,13(4):178-180.
    [50] Raymond P A. The composition and transport of organic carbon in rainfall:Insights from the natural(13C and14C)isotopes of carbon. Geophysical Research Letters,2005,32(14):L14402.
    [51] Williams M R,Fisher T R,Melack J M. Chemical composition and deposition of rain in the central Amazon,Brazil. Atmospheric Environment,1997,31(2):207-217.
    [52]樊建凌,胡正义,庄舜尧,周静,王体健,刘翠英.林地大气氮沉降的观测研究.中国环境科学,2007,27(1):7-9.
    [53]宋欢欢,姜春明,宇万太.大气氮沉降的基本特征与监测方法.应用生态学报,2014,25(2):599-610.
    [54] Cornell S,Mace K,Coeppicus S,Duce R,Huebert B,Jickells T,Zhuang L Z. Organic nitrogen in Hawaiian rain and aerosol. Journal of Geophysical Research,2001,106(D8):7973-7983.
    [55]宇万太,马强,张璐,周桦.下辽河平原降雨中氮素的动态变化.生态学杂志,2008,27(1):33-37.
    [56]王磊,程淑兰,方华军,于贵瑞,党旭升,李晓玉,司高月,耿静,何舜.外源性NH+4和NO-3输入对亚热带人工林土壤N2O排放的影响.土壤学报,2016,53(3):724-734.
    [57]刘允芬,于贵瑞,温学发,王迎红,宋霞,李菊,孙晓敏,杨风亭,陈永瑞,刘琪璟.千烟洲中亚热带人工林生态系统CO2通量的季节变异特征.中国科学D辑:地球科学,2006,36(S1):91-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700