用户名: 密码: 验证码:
激光选区熔化成形TC4钛合金薄壁件变形与残余应力
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Deformation and residual stress of TC4 titanium alloy thin-wall parts by selective laser melting
  • 作者:王俊飞 ; 袁军堂 ; 汪振华 ; 章波 ; 刘嘉鑫
  • 英文作者:WANG Junfei;YUAN Juntang;WANG Zhenhua;ZHANG Bo;LIU Jiaxin;School of Mechanical Engineering, Nanjing University of Science and Technology;
  • 关键词:激光技术 ; 激光选区熔化 ; TC4钛合金薄壁件 ; 变形 ; 残余应力
  • 英文关键词:laser technique;;selective laser melting;;TC4 titanium alloy thin-wall parts;;deformation;;residual stress
  • 中文刊名:JGJS
  • 英文刊名:Laser Technology
  • 机构:南京理工大学机械工程学院;
  • 出版日期:2018-11-01 14:10
  • 出版单位:激光技术
  • 年:2019
  • 期:v.43;No.241
  • 基金:国家自然科学基金资助项目(51675285)
  • 语种:中文;
  • 页:JGJS201903023
  • 页数:6
  • CN:03
  • ISSN:51-1125/TN
  • 分类号:125-130
摘要
增材制造(3-D打印)作为一种近净成形技术,为钛合金薄壁件高质量毛坯制造提供了新途径,但在薄壁件成形过程中产生的变形与残余应力会影响试件的成形质量与后续加工。为了解决这一问题,采用激光选区熔化成形TC4钛合金薄壁件,研究了激光功率、扫描速率、薄壁厚度和扫描路径方向对试件变形与残余应力的影响,测量了试件不同深度的表面残余应力。结果表明,变形主要在薄壁件顶层两侧,最大残余应力主要分布在试件底层与薄壁件中间;当激光功率为180W、扫描速率为1200mm/s时,试件变形最小;当壁厚为0.6mm、扫描路径方向45°时,试件残余应力最小;薄壁件的未处理表面残余应力大于内层表面残余应力。该研究为钛合金薄壁高质量毛坯制造提供了技术帮助。
        Additive manufacturing(3-D printing) is a near-net forming technology. It provides a new way for manufacturing high quality blanks of thin-wall titanium alloy parts. However, in the forming process of thin-wall parts, deformation and residual stress will affect forming quality and subsequent processing of the specimens. In order to solve this problem, TC4 titanium alloy thin-wall parts were formed by selective laser melting. The effects of laser power, scanning speed, thickness of thin-wall and direction of scanning path on deformation and residual stress of specimens were studied. Surface residual stresses at different depths were measured. The results show that deformation occurs mainly on both sides of the top layer of thin-wall parts. The maximum residual stress is mainly distributed in the bottom and the middle of thin walls. With laser power of 180 W and scanning speed of 1200 mm/s, the deformation of specimen is the smallest. With wall thickness of 0.6 mm and scanning path direction of 45°, residual stress of the specimen is the smallest. Residual stress of the untreated surface of thin-walled parts is larger than that of the inner surface. This research provides technical assistance for the manufacture of high quality thin-wall titanium alloy blanks.
引文
[1] ZHANG L J,SHEN W,LIU T.Study on technological machining of thing-wall titanium alloy element[J].Modern Manufacturing Engineering,2012,34(11):69-72(in Chinese).
    [2] LIANG X K,DONG P,CHEN J L,et al.Microstructure and mechanical properties of selective laser melting Ti-6Al-4V alloy [J].Applied Laser,2014,34(2):101-104(in Chinese).
    [3] UHLMANN E,KERSTUNG R,KLEIN T B,et al.Additive manufacturing of titanium alloy for aircraft components [J].Procedia Cirp,2015,35:55-60.
    [4] YAO H Sh,SHI Y Sh,ZHANG W X,et al.Numerical simulation of the temperature field in selective laser melting [J].Applied Laser,2007,27(6):456-460(in Chinese).
    [5] YANG Y Q,LUO Z Y,SU X B,et al.Study on process and effective factors of stainless steel thin-wall parts manufactured by selective laser melting[J].Chinese Journal of Lasers,2011,38(1):0103001(in Chinese).
    [6] LIU Y,ZHANG J,PANG Z,et al.Investigation into the influence of laser energy input on selective laser melted thin-walled parts by response surface method[J].Optics & Lasers in Engineering,2018,103:34-45.
    [7] LI Zh H,REN J X,ZHENG W Zh,et al.The influence of scan length on fabricating thin-walled components in selective laser melting[J].International Journal of Machine Tools & Manufacture,2017,126:1-12.
    [8] SONG C,YANG Y,LIU Y,et al.Study on manufacturing of W-Cu alloy thin wall parts by selective laser melting[J].International Journal of Advanced Manufacturing Technology,2015,78(5/8):885-893.
    [9] LI C,LIU J F,FANG X Y,et al.Efficient predictive model of part distortion and residual stress in selective laser melting[J].Additive Manufacturing,2017,17:157-168.
    [10] ZHANG K,LIU T T,ZHANG C D,et al.Study on deformation behavior in selective laser melting based on the analysis of the melt pool data[J].Chinese Journal of Lasers,2015,42(9):0903007(in Chinese).
    [11] MAZUR M,LEARY M,SUN S,et al.Deformation and failure behavior of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM)[J].International Journal of Advanced Manufacturing Technology,2016,84(5/8):1391-1411.
    [12] ZHANG G Q,YANG Y Q,ZHANG Z M,et al.Optimal design of support structures in selective laser melting of part[J].Chinese Journal of Lasers,2016,43(12):1202002(in Chinese).
    [13] PARRY L,ASHCROFT I A,WILDMAN R D.Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation[J].Additive Manufacturing,2016,12:1-15.
    [14] ALI H,GHADBEIGI H,MUMTAZ K.Effect of scanning strategies on residual stress and mechanical properties of selective laser melted Ti6Al4V[J].Materials Science and Engineering,2018,A712:175-187.
    [15] LI Y,ZHOU K,TAN P,et al.Modeling temperature and residual stress fields in selective laser melting[J].International Journal of Mechanical Sciences,2018,136:24-35.
    [16] SIMSON T,EMMEL A,DWARS A,et al.Residual stress measurements on AISI 316L samples manufactured by selective laser melting[J].Additive Manufacturing,2017,17:183-189.
    [17] VRANCKEN B,CAIN V,KNUTSEN R,et al.Residual stress via the contour method in compact tension specimens produced via selective laser melting[J].Scripta Materialia,2014,87:29-32.
    [18] DENG Sh Sh,YANG Y Q,LI Y,et al.Planning of area-partition scanning path and its effect on residual stress of SLM molding parts[J].Chinese Journal of Lasers,2016,43(12):1202003(in Chinese).
    [19] LIANG X K,CHEN J L,YAN Zh Y,et al.Study on surface adhesion and residual stress of TC4 titanium alloy by selective laser melting[J].Electro Machining Mould,2016,16(5):52-55(in Chinese).
    [20] OSAKADA K,SHIOMI M.Flexible manufacturing of metallic products by selective laser melting of powder[J].International Journal of Machine Tools & Manufacture,2006,46(11):1188-1193.
    [21] LIU Z A,SHI W,WANG Ch.Study on numerical simulation of residual stresses cinduced by laser shock processing[J].Laser Technology,2017,41(1):1-5(in Chinese).
    [22] LIU T T,ZHANG Ch D,LIAO W H,et al.Experimental analysis of pool behavior in overhang structure fabricated by selective laser melting[J].Chinese Journal of Lasers,2016,43(12):1202004(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700