网状结构热障涂层的激光快速成型及抗热震性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermal Shock Resistance and Laser Rapid Prototyping of Thermal Barrier Coatings with Network Structures
  • 作者:周逸波 ; 秦渊 ; 杨森
  • 英文作者:Zhou Yibo;Qin Yuan;Yang Sen;School of Materials Science and Engineering, Nanjing University of Science and Technology;
  • 关键词:激光技术 ; 热障涂层 ; 网状结构 ; 激光快速成型 ; 抗热震性 ; 失效机理
  • 英文关键词:laser technique;;thermal barrier coatings;;network structure;;laser rapid prototyping;;thermal shock resistance;;failure mechanism
  • 中文刊名:JGDJ
  • 英文刊名:Laser & Optoelectronics Progress
  • 机构:南京理工大学材料科学与工程学院;
  • 出版日期:2017-09-20 20:59
  • 出版单位:激光与光电子学进展
  • 年:2018
  • 期:v.55;No.625
  • 基金:中央高校基本科研业务费专项资金(30920130112010)
  • 语种:中文;
  • 页:JGDJ201802044
  • 页数:9
  • CN:02
  • ISSN:31-1690/TN
  • 分类号:341-349
摘要
为了提高航空发动机热端部件的热障涂层(TBCs)与基体的结合强度、延长涂层使用寿命,利用激光快速成型技术在高温合金基体上制备了网状结构的衬垫,用等离子喷涂法制备了陶瓷涂层,并通过实验比较该陶瓷涂层与传统两层结构涂层的抗热震性能。基于热弹塑性力学理论,建立了二维有限元数值模型,分析了热震中网状衬垫对热障涂层应力分布的影响。结果表明,传统两层结构与具有网状衬垫的热障涂层分别在经历45和111次热震后失效,且由于陶瓷层和粘结层之间生长的热氧化层(TGO),边缘位置的陶瓷层均发生剥落。数值分析结果表明,网状衬垫的加入使得涂层边界区域的应力集中得到改善,涂层剥落被有效抑制,从而使得热障涂层抗热震性能提高。
        In order to improve the bonding strength between substrates and thermal barrier coatings( TBCs) of hot components of aircraft engines and prolong service life of coatings, the laser rapid prototyping technology is applied to fabricate a network structure on a superalloy substrate, and the plasma spraying method is for ceramic coatings. The thermal shock resistance of these TBCs is studied experimentally and compared with that of traditional coatings with a two-layer structure. To further analyze the effect of the network structure on the stress distribution of TBCs, a two-dimensional finite element numerical model is established based on the thermo-elastic-plastic theory. The results show that the TBCs with a traditional two-layer structure and a network structure fail after 45 and 111 thermal shocks, respectively. Due to the thermally grown oxide layer( TGO) along the interface between the layers of ceramic and bond coating, a spalling of the ceramic layer near the edge is observed for both kinds of TBCs. Further numerical analysis results show that the concentration of stress on the boundary region is relatively released with the help of the network structure. Accordingly, the cracks originated on the boundary are effectively suppressed, which reasonably makes the thermal shock resistance improvement of TBCs.
引文
[1]Zhang T Y,Wu C,Xiong Z,et al.Progress in research on thermal barrier coating materials and their preparation technology[J].Laser&Optoelectronics Progress,2014,51(3):030004.张天佑,吴超,熊征,等.热障涂层材料及其制备技术的研究进展[J].激光与光电子学进展,2014,51(3):030004.
    [2]Dou J Y,Liu G H,Pang M,et al.Study on structural characteristics of semiconductor laser cladding Co Cr Ta Al Y coating[J].Applied Laser,2017,37(1):32-37.窦俊雅,刘光华,庞铭,等.半导体激光熔覆Co Cr Ta Al Y涂层结构特征的研究[J].应用激光,2017,37(1):32-37.
    [3]Taylor R,Brandon J R,Morrell P.Microstructure composition and property relationships of plasma sprayed thermal barrier coatings[J].Surface and Coatings Technology,1992,50(2):141-149.
    [4]Liu Q X.Finite element simulation of turbine blade failure in thermal barrier coating[D].Xiangtan:Xiangtan University,2012.刘奇星.热障涂层涡轮叶片失效的有限元模拟[D].湘潭:湘潭大学,2012.
    [5]Zhang Q,Li C J,Li Y,et al.Thermal failure of nanostructured thermal barrier coatings with cold-sprayed nanostructured Ni Cr Al Y bond coat[J].Journal of Thermal Spray Technology,2008,17(5/6):838-845.
    [6]Zhou Y C,Liu Q X,Yang L,et al.Failure mechanism and life prediction of thermal barrier coatings[J].Acta Mechanica Solida Sinica,2010,31(5):504-531.周益春,刘奇星,杨丽,等.热障涂层的破坏机理与寿命预测[J].固体力学学报,2010,31(5):504-531.
    [7]Liu H F.Preparation and properties of two yuan rare earth oxide doped zirconia stabilized thermal barrier coating[D].Changsha:Central South University,2011.刘怀菲.二元稀土氧化物掺杂稳定氧化锆热障涂层材料的制备及性能研究[D].长沙:中南大学,2011.
    [8]Padture N P,Gell M,Jordan E H.Thermal barrier coatings for gas-turbine engine applications[J].Science,2002,296(5566):280-284.
    [9]Gong S K,Deng L.Ceramic thermal barrier coating preparation technology and development trend[J].Materials review,1999,13(6):31-34.宫声凯,邓亮.陶瓷热障涂层制备技术及发展趋势[J].材料导报,1999,13(6):31-34.
    [10]Li L Q,Yao C W,Huang J,et al.Characteristics of retained austenite in dendrites of laser cladding high hardness Fe based coating[J].Chinese Journal of Lasers,2017,44(3):0302011.李林起,姚成武,黄坚,等.激光熔覆高硬度铁基涂层枝晶间残余奥氏体相特征[J].中国激光,2017,44(3):0302011.
    [11]Wright P K,Evans A G.Mechanisms governing the performance of thermal barrier coatings[J].Current Opinion in Solid State and Materials Science,1999,4(3):255-265.
    [12]Merrill G B,Morrison J A.High temperature erosion resistant,abradable thermal barrier composite coating:US6235370B1[P].2001-05-22.
    [13]Wallace M J.Ceramic faced outer air seal for gas turbine engines:US4289446A[P].1983-12-27.
    [14]Li X,Liu H G,Zhang D H.High pressure turbine gas path seal coating technology research[C].National Thermal Spraying Technology Seminar,2000:99-103.李鑫,刘会刚,张东辉.航空发动机高压涡轮外气路封严涂层技术研究[C].全国热喷涂技术交流研讨会,2000:99-103.
    [15]Liu S.Effect of preparation technology on the structure and performance of thermal barrier coatings[D].Shenyang:Shenyang University of Technology,2015.刘爽.热障涂层制备工艺对涂层组织结构与性能的影响[D].沈阳:沈阳工业大学,2015.
    [16]Huang Y,Sun W L,Chen Y.Trajectory planning of complex shaft parts by laser cladding remanufacturing[J].Infrared and laser engineering,2017,46(5):45-51.黄勇,孙文磊,陈影.激光熔覆再制造复杂轴类零件的轨迹规划[J].红外与激光工程,2017,46(5):45-51.
    [17]Ma W,Pan W X,Wu C K.Progress in research on properties and failure mechanism of thermal barrier coatings[J].Advances in Mechanics,2003,33(4):548-559.马维,潘文霞,吴承康.热障涂层材料性能和失效机理研究进展[J].力学进展,2003,33(4):548-559.
    [18]Wang D.Preparation of thermal barrier coatings and their thermal shock by EB-PVD[D].Shenyang:Northeastern University,2014.王栋.EB-PVD制备热障涂层及其热震性研究[D].沈阳:东北大学,2014.
    [19]Wang L L.Performance prediction and failure mechanism analysis of thermal barrier coatings based on 3D microstructure model[D].Beijing:Beijing Institute of Technology,2016.王琳琳.基于三维微观结构模型的热障涂层性能预测及失效机理分析[D].北京:北京理工大学,2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700