用户名: 密码: 验证码:
纳米金改善激光诱导等离子体探测方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the improvement of laser induced plasma detection method by Au-nanoparticles
  • 作者:宋言明 ; 张雄雄 ; 孙广开 ; 孟凡勇 ; 娄小平
  • 英文作者:Song Yanming;Zhang Xiongxiong;Sun Guangkai;Meng Fanyong;Lou Xiaoping;Overseas Expertise Introduction Center for Discipline Innovation ("111 Center"), Beijing Information Science & Technology University;Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science & Technology University;
  • 关键词:激光诱导击穿光谱技术 ; 纳米增强激光诱导击穿光谱技术 ; 金纳米颗粒 ; 光谱信号 ; 信噪比
  • 英文关键词:laser induced breakdown spectroscopy(LIBS);;nanoparticle enhancedlaser induced breakdown spectroscopy(NELIBS);;au-nanoparticles;;spectral signal;;signal-to-noise ratio(SNR)
  • 中文刊名:YQXB
  • 英文刊名:Chinese Journal of Scientific Instrument
  • 机构:北京信息科技大学先进光电子器件与系统学科创新引智基地(国家111基地);北京信息科技大学光纤传感与系统北京实验室;
  • 出版日期:2019-01-15
  • 出版单位:仪器仪表学报
  • 年:2019
  • 期:v.40
  • 基金:教育部“长江学者与创新团队发展计划”项目(IRT_16R07);; 光电测试技术北京市重点实验室开放课题(GDKF2017006);; 国家自然科学基金(61735002)项目资助
  • 语种:中文;
  • 页:YQXB201901003
  • 页数:7
  • CN:01
  • ISSN:11-2179/TH
  • 分类号:24-30
摘要
针对提高激光诱导击穿光谱技术(LIBS)中等离子体的发射光谱强度的问题,提出一种在铜样品表面沉积金纳米颗粒的方法。在样品表面沉积纳米金颗粒后对铜进行激光诱导击穿(NELIBS),得到NELIBS和LIBS下的发射光谱强度增强因子、信噪比等参数。实验表明,通过在铜样品表面沉积金纳米颗粒的LIBS(NELIBS)可以有效增强等离子体辐射光谱信号强度,铜元素谱线增强因子最高可达8.01,微量元素镁元素谱线增强因子最高为6.01,且增强因子均随激光能量的增加而逐渐减小并趋于稳定;NELIBS可以明显改善信噪比,铜元素在激光脉冲能量为80 mJ时达到最优,镁元素在激光能量为50 mJ时达到最优。对谱线Cu I 521.8 nm和Mg II 279.569 nm进行洛伦兹拟合,并得到半高全宽,发现纳米金颗粒使谱线半高全宽增加,谱线Mg II 279.569 nm的半高全宽增加了165.58%,谱线Cu I 521.8 nm的半高全宽增加了30%。样品中的微量元素因谱线强度低、信噪比差而无法探测到,通过此方法可以有效提高探测能力。
        In order to improve the emission spectrum intensity of plasma in laser induced breakdown spectroscopy(LIBS), a method of depositing Au-nanoparticles on the surface of copper samples was proposed. The Au-nanoparticles enhanced LIBS(NELIBS) was deposited on the surface of the sample, and the emission intensity enhancement factor and signal-to-noise ratio(SNR) of NELIBS and LIBS were obtained. Experimental results show that the intensity of plasma radiation spectral signal can be effectively enhanced by depositing Au-nanoparticles LIBS(NELIBS) on the surface of copper samples. The copper element line enhancement factor can reach up to 8.01, and the trace element magnesium element line enhancement factor is up to 6.01. The enhancement factor decreases with the increase of laser energy and tends to be stable. NELIBS can significantly improve the signal-to-noise ratio. The copper element is optimal when the laser pulse energy is 80 mJ, and the magnesium element reaches 50 mJ when the laser energy is optimal. The trace elements in the sample cannot be detected due to the low spectral intensity and poor signal-to-noise ratio. This method can effectively improve the detection capability.
引文
[1] 周维虎, 石俊凯, 纪荣祎,等. 飞秒激光频率梳精密测距技术综述[J]. 仪器仪表学报, 2017, 38 (8): 1860-1868.ZHOU W H, SHI J K, JI R Y,et al. High-precision distance measurement using femtosecond laser frequency comb[J]. Chinese Journal of Scientific Instrument, 2017, 38(8): 1860-1868.
    [2] 沈小军, 杜勇, 王仁德, 等. 基于地面激光雷达的输电线路铁塔倾斜度测量[J]. 电子测量与仪器学报, 2017, 31(4): 516- 521.SHEN X J, DU Y, WANG R D, et al. Inclination measurement of transmission line tower based on terrestrial 3D lidar[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(4):516- 521.
    [3] 李海洋, 李巧霞, 王召巴. 针对金属表面裂纹角度的激光超声检测[J]. 国外电子测量技术, 2018, 37(2): 95-99.LI H Y, LI Q X, WANG ZH B. Laser ultrasonic testing for the angle of surface crack on metal[J]. Foreign Electronic Measurement Technology, 2018, 37(2): 95-99.
    [4] 彭希锋,陈爽,李海星,等.基于激光位移传感器的面角度测量技术研究[J]. 仪器仪表学报,2017,38(11):2735- 2743.PENA X F, CHEN SH, LI H X, et al. Study on the plane angle measurement technology based on aser displacement sensors[J]. Chinese Journal of Scientific Instrument, 2017, 38(11): 2735- 2743.
    [5] 庞治国, 雷添杰, 曲伟, 等. 基于无人机载激光雷达的库区高精度DEM生成[J]. 电子测量技术, 2018, 41(9): 80- 83.PANG Z G, LEI T J, QU W, et al. High precision DEM generation in the reservoir area based on UAV airborne lidar[J]. Electronic Measurement Technology, 2018, 41(9):80- 83.
    [6] 吴少波, 叶连慧. LIBS成分分析中元素谱线的自动识别方法[J]. 仪器仪表学报, 2014, 35(3):670- 675.WU SH B, YE L H. Automatic recognization method of element emission lines in composition analysis with LIBS[J]. Chinese Journal of Scientific Instrument, 2014, 35(3):670- 675.
    [7] BREVES E A, LEPORE K, DYAR M D, et al. Laser-induced breakdown spectra of rock powders at variable ablation and collection angles under Mars-analog conditions[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2017(137):46- 58.
    [8] 闫梦鸽, 董晓舟, 李颖, 等. 激光诱导击穿光谱的自组织特征映射结合相关判别对天然地质样品分类方法研究[J]. 光谱学与光谱分析,2018, 38(6):1874-1879.YAN M G, DONG X ZH, LI Y, et al. Classification of geological samples with laser-induced breakdown spectroscopy based on self-organizing feature map network and correlation discrimination analysis[J]. Spectroscopy and Spectral Analysis,2018, 38(6):1874-1879.
    [9] ZHANG T, YAN C, QI J, et al. Classification and discrimination of coal ash by laser-induced breakdown spectroscopy (LIBS) coupled with advanced chemometric methods[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(10),doi:10.1039/C7JA00218A.
    [10] HUDSON S W, CRAPARO J, SARO R D, et al. Applications of laser-induced breakdown spectroscopy (LIBS) in molten metal processing[J]. Metallurgical & Materials Transactions B, 2017, 48(5):2731- 2742.
    [11] TIWARI P K, AWASTHI S, KUMAR R, et al. Rapid analysis of pharmaceutical drugs using LIBS coupled with multivariate analysis[J]. Lasers in Medical Science, 2017(19):1- 8.
    [12] GIRON D, DELGADO T, RUIZ J, et al. In-situ monitoring and characterization of airborne solid particles in the hostile environment of a steel industry using stand-off LIBS[J]. Measurement, 2018(115):1-10.
    [13] MARKIEWICZ K M, CASADO-GAVALDA M P, CAMA-MONCUNILL X, et al. Laser-induced breakdown spectroscopy (LIBS) for rapid analysis of ash, potassium and magnesium in gluten free flours[J]. Food Chemistry, 2018 (244):324-330.
    [14] NIU SH, ZHENG L J, KHAN A Q, et al. Laser-induced breakdown spectroscopic detection of trace level heavy metal in solutions on a laser-pretreated metallic target[J]. Talanta, 2018(179):312-317.
    [15] ZHANG D, CHEN AN M, WANG X W, et al. Enhancement mechanism of femtosecond double-pulse laser-induced Cu plasma spectroscopy[J]. Optics Laser Technology, 2017(96):117-122.
    [16] KHALIL A A I, MORSY M A, ELDEEN Z H. Development of double-pulse lasers ablation system and electron paramagnetic resonance spectroscopy for direct spectral analysis of manganese doped PVA polymer[J]. Optics Laser Technology, 2017(96): 227- 237.
    [17] 杨瑞兆, 苏雪娇, 於有利,等. 共线双脉冲激光诱导击穿光谱技术检测铝合金中的Cr和Mn[J]. 强激光与粒子束, 2018,30(9):166-169.YANG R ZH, SU X J, YU Y L, et al. Double pulse laser-induced breakdown spectroscopy analysis of trace elements Cr and Mn in aluminum alloy[J]. High power Laser And Particle Beams,2018, 30(9):166-169.
    [18] AN L, KE C, LIANG L, et al. Accuracy enhancement of laser induced breakdown spectra using permittivity and size optimized plasma confinement rings[J]. Optics Express, 2017, 25(22):27559.
    [19] 王静鸽,李小龙,胡俊涛,等.半球空腔约束对激光诱导玻璃等离子体辐射增强特性的研究[J].光子学报,2018, 47(8):95-101.WANG J G, LI X L, HU J T, et al. Effects of hemispherical confinement on the enhancement of laser-induced glass plasma radiation[J]. Acta Photonica Sinica, 2018, 47(8): 95-101.
    [20] BANERJEE S P, FEDOSEJEVS R. Single shot depth sensitivity using femtosecon-laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2014 (92):34- 41.
    [21] LIU C, GAO X, LIU L, et al. Evolution of laser-induced plasma spectrum intensity under magnetic field confinement[J]. Acta Physica Sinica, 2014, 63(14):236- 240.
    [22] 陈金忠,白津宁,陈振玉,等.平面反射镜装置对激光诱导等离子体辐射特性的影响[J].光谱学与光谱分析,2013, 33(8):2039- 2042.CHEN J ZH, BAI J N, CHEN ZH Y, et al. Effect of flat mirror device on laser-induced plasma radiation characteristics[J]. Spectroscopy and Spectral Analysis, 2013, 33(8): 2039- 2042.
    [23] SONG-NING X U, RAN J, NING R B, et al. Study of the enhancement effect of copper alloy self-hole confinement on plasma radiation[J]. Spectroscopy & Spectral Analysis, 2016, 36(7):2229- 2233.
    [24] DE-GIACOMOET A, GAUDIUSO R, KOEAL C, et al. Nanoparticle enhanced laser induced breakdown spectroscopy: Effect of nanoparticles deposited on sample surface on laser ablation and plasma emission[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2014, 98(8):19- 27.
    [25] El SHERBINI A M, PARIGGER C G. Wavelength dependency and threshold measurements for nanoparticle-enhanced laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2016(116):8-15.
    [26] SLADKOVA L, PROCHAZKA D, PORIZKA P, et al. Improvement of the laser-induced breakdown spectroscopy method sensitivity by the usage of combination of Ag-nanoparticles and vacuum conditions[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2016(127):48- 55.
    [27] YANG F, JIANG L, WANG S M, et al. Emission enhancement of femtosecond laser-induced breakdown spectroscopy by combining nanoparticle and dual-pulse on crystal SiO2[J]. Optics & Laser Technology, 2017(93):194- 200.
    [28] GIZCOMO A D, GAUDIUSO R, KORALl C, et al. Nanoparticle enhanced laser induced breakdown spectroscopy: effect of nanoparticles deposited on sample surface on laser ablation and plasma emission[J]. Spectrochim. Acta Part B:Atomic Spectroscopy,2014(98):19- 27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700