用户名: 密码: 验证码:
长期不同施肥对稻田土壤有机碳矿化及激发效应的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Varying Long-term Fertilization on Organic Carbon Mineralization and Priming Effect of Paddy Soil
  • 作者:马欣 ; 魏亮 ; 唐美玲 ; 徐福利 ; 祝贞科 ; 葛体达 ; 吴金水
  • 英文作者:MA Xin;WEI Liang;TANG Mei-ling;XU Fu-li;ZHU Zhen-ke;GE Ti-da;WU Jin-shui;College of Resources and Environment,Northwest A&F University;Key Laboratory of Subtropical Agriculture Ecology,Institute of Subtropical Agriculture,Chinese Academy of Sciences;College of Life Science and Engineering,Central South University of Forestry and Technology;Institute of Soil and Water Conservation of Chinese Academy of Sciences,Ministry of Water Resources;
  • 关键词:水稻土 ; 长期施肥 ; 同位素标记 ; 有机碳矿化 ; 激发效应
  • 英文关键词:paddy soils;;long-term fertilization;;isotope labeling technique;;organic carbon mineralization;;priming effect
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:西北农林科技大学资源环境学院;中国科学院亚热带农业生态研究所亚热带农业生态过程重点实验室;中南林业科技大学生命科学与技术学院;中国科学院水利部水土保持研究所;
  • 出版日期:2018-06-21 15:33
  • 出版单位:环境科学
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金项目(41501321);; 政府间国际科技创新合作重点专项(S2016G0053)
  • 语种:中文;
  • 页:HJKZ201812047
  • 页数:7
  • CN:12
  • ISSN:11-1895/X
  • 分类号:394-400
摘要
通过室内模拟培养实验,结合14C同位素标记技术,研究了不施肥(CK)、单施化肥(NPK)、秸秆还田+化肥(ST)这3种施肥处理下稻田耕层土壤有机碳矿化特征及其对添加外源葡萄糖的响应特征.结果表明,56 d培养实验结束时,CK处理土壤累积矿化率(土壤原有有机碳累积矿化量/土壤总有机碳含量)达到1. 64%,而NPK和ST处理较CK处理显著降低了0. 34%和0. 39%(P <0. 05),表明长期施肥对土壤碳有一定的固持作用.长期不同施肥处理土壤对添加外源葡萄糖的响应有所不同,表现出了不同程度的激发效应.随着培养时间的推移,3种处理土壤碳矿化的激发效应由负激发效应逐渐转为正激发效应. 56 d时,ST和NPK处理土壤的负累积激发效应比CK分别显著提高了22. 07和9. 05倍(P <0. 05).结构方程模型分析表明,土壤NH+4-N和DOC含量主要通过影响土壤MBC和MBN含量间接影响土壤累积激发效应,且NH+4-N对土壤累积激发效应有直接的显著负影响.综上所述,长期施肥降低了稻田土壤原有有机碳累积矿化率,有利于增强稻田土壤碳的固持和积累,秸秆还田加化肥效果更加明显.
        A laboratory incubation experiment was conducted using the14 C isotope labeling technique to study the characteristics of organic carbon mineralization and their response to glucose addition when treated with a combination of straw and chemical fertilizer(ST), inorganic fertilizer(NPK), and non-fertilization(CK). The cumulative mineralization rate(ratio of accumulated mineralization amount to total organic carbon content) in CK reaches 1. 64% at the end of incubation(56 days). The cumulative mineralization rate during NPK and ST treatments is significantly lower than that in CK(by 0. 34% and 0. 39%,respectively). This indicates that long-term fertilization affects the soil carbon sequestration. Varying long-term fertilization influences the response of paddy soil to glucose addition and leads to different levels of the priming effect. The priming effect on soil organic carbon mineralization of the three treatments gradually changes from negative to positive with increasing incubation time. The significantly negative cumulative priming effect in ST and NPK after 56 d is 22. 07 and 9. 05 times higher than that in CK,respectively. The results of the structural equation model indicate that the NH+4-N and DOC contents indirectly influence the cumulative priming effect on soil organic carbon by affecting the MBC and MBN contents. The NH+4-N concentration has a direct and significant negative effect on the cumulative priming effect. In conclusion,long-term fertilization treatments reduce the cumulative organic carbon mineralization rate of paddy soil.Fertilizer,especially the combination of straw and chemical fertilizer,enhances the soil carbon sequestration and accumulation.
引文
[1]徐明岗,张旭博,孙楠,等.农田土壤固碳与增产协同效应研究进展[J].植物营养与肥料学报,2017,23(6):1441-1449.Xu M G,Zhang X B,Sun N,et al. Advance in research of synergistic effects of soil carbon sequestration on crop yields improvement in croplands[J]. Journal of Plant Nutrition and Fertilizer,2017,23(6):1441-1449.
    [2] Lal R. Soil carbon sequestration to mitigate climate change[J].Geoderma,2004,123(1-2):1-22.
    [3] Franzluebbers A J. Soil organic carbon sequestration and agricultural greenhouse gas emissions in the southeastern USA[J]. Soil and Tillage Research,2005,83(1):120-147.
    [4]李忠佩,张桃林,陈碧云.可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J].土壤学报,2004,41(4):544-552.Li Z P,Zhang T L,Chen B Y. Dynamics of soluble organic carbon and its relation to mineralization of soil organic carbon[J]. Acta Pedologica Sinica,2004,41(4):544-552.
    [5] Kuzyakov Y,Friedel J K,Stahr K. Review of mechanisms and quantification of priming effects[J]. Soil Biology and Biochemistry,2000,32(11-12):1485-1498.
    [6] Kuzyakov Y. Priming effects:interactions between living and dead organic matter[J]. Soil Biology and Biochemistry,2010,42(9):1363-1371.
    [7]张政,蔡小真,唐偲頔,等.可溶性有机质输入对杉木人工林表层土壤有机碳矿化的激发效应[J].生态学报,2017,37(22):7660-7667.Zhang Z,Cai X Z,Tang C D,et al. Priming effect of dissolved organic matter in the surface soil of a Cunninghamia lanceolata Plantation[J]. Acta Ecologica Sinica,2017,37(22):7660-7667.
    [8]唐美玲,魏亮,祝贞科,等.稻田土壤有机碳矿化及其激发效应对磷添加的响应[J].应用生态学报,2018,29(3):857-864.Tang M L,Wei L,Zhu Z K,et al. Responses of organic carbon mineralization and priming effect to phosphorus addition in paddy soils[J]. Chinese Journal of Applied Ecology,2018,29(3):857-864.
    [9]袁红朝,秦红灵,刘守龙,等.长期施肥对稻田土壤固碳功能菌群落结构和数量的影响[J].生态学报,2012,32(1):183-189.Yuan H Z,Qin H L,Liu S L,et al. Abundance and composition of CO2fixating bacteria in relation to long-term fertilization of paddy soils[J]. Acta Ecologica Sinica,2012,32(1):183-189.
    [10]郭振,王小利,段建军,等.长期施肥对黄壤性水稻土有机碳矿化的影响[J].土壤学报,2018,55(1):225-235.Guo Z,Wang X L,Duan J J,et al. Long-term fertilization and mineralization of soil organic carbon in paddy soil from yellow earth[J]. Acta Pedologica Sinica,2018,55(1):225-235.
    [11] Ginting D,Kessavalou A,Eghball B,et al. Greenhouse gas emissions and soil indicators four years after manure and compost applications[J]. Journal of Environmental Quality,2003,32(1):23-32.
    [12]李梦雅,王伯仁,徐明岗,等.长期施肥对红壤有机碳矿化及微生物活性的影响[J].核农学报,2009,23(6):1043-1049.Li M Y, Wang B R, Xu M G, et al. Effect of long-term fertilization on mineralization of organic carbon and microbial activity in red soil[J]. Journal of Nuclear Agricultural Sciences,2009,23(6):1043-1049.
    [13]王朔林,杨艳菊,王改兰,等.长期施肥对栗褐土有机碳矿化的影响[J].植物营养与肥料学报,2016,22(5):1278-1285.Wang S L,Yang Y J,Wang G L,et al. Effect of long-term fertilization on organic carbon mineralization of cinnamon soil[J]. Journal of Plant Nutrition and Fertilizer,2016,22(5):1278-1285.
    [14]吴萌,李忠佩,冯有智,等.长期施肥处理下不同类型水稻土有机碳矿化的动态差异[J].中国农业科学,2016,49(9):1705-1714.Wu M,Li Z P,Feng Y Z,et al. Dynamic differences of organic carbon mineralization in different types of paddy soil under longterm located fertilization[J]. Scientia Agricultura Sinica,2016,49(9):1705-1714.
    [15]马天娥,魏艳春,杨宪龙,等.长期施肥措施下土壤有机碳矿化特征研究[J].中国生态农业学报,2016,24(1):8-16.Ma T E, Wei Y C, Yang X L, et al. Mineralization characteristics of soil organic carbon under long-term fertilization management[J]. Chinese Journal of Eco-Agriculture,2016,24(1):8-16.
    [16]戚瑞敏,赵秉强,李娟,等.添加牛粪对长期不同施肥潮土有机碳矿化的影响及激发效应[J].农业工程学报,2016,32(S2):118-127.Qi R M,Zhao B Q,Li J,et al. Effects of cattle manure addition on soil organic carbon mineralization and priming effects under long-term fertilization regimes[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(S2):118-127.
    [17]袁红朝,王久荣,刘守龙,等.稳定碳同位素技术在土壤根际激发效应研究中的应用[J].同位素,2018,31(1):57-63.Yuan H Z,Wang J R,Liu S L,et al. Application of stable carbon isotope technique in the research of soil rhizosphere priming effect[J]. Journal of Isotopes,2018,31(1):57-63.
    [18] Zhu Z K,Ge T D,Luo Y,et al. Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil[J]. Soil Biology and Biochemistry,2018,121:67-76.
    [19]鲍士旦.土壤农化分析[M].(第三版).北京:中国农业出版社,2005.
    [20]吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006.
    [21]魏亮,汤珍珠,祝贞科,等.水稻不同生育期根际与非根际土壤胞外酶对施氮的响应[J].环境科学,2017,38(8):3489-3496.Wei L,Tang Z Z,Zhu Z K,et al. Responses of extracellular enzymes to nitrogen application in rice of various ages with rhizosphere and bulk soil[J]. Environmental Science,2017,38(8):3489-3496.
    [22] Kuzyakov Y,Bol R. Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar[J]. Soil Biology and Biochemistry,2006,38(4):747-758.
    [23]黄文昭,赵秀兰,朱建国,等.土壤碳库激发效应研究[J].土壤通报,2007,38(1):149-154.Huang W S,Zhao X L,Zhu J G,et al. Priming effect of soil carbon pools[J]. Chinese Journal of Soil Science,2007,38(1):149-154.
    [24]袁淑芬,汪思龙,张伟东.外源有机碳和温度对土壤有机碳分解的影响[J].土壤通报,2015,46(4):916-922.Yuan S F,Wang S L,Zhang W D. Effect of external organic carbon and temperature on SOC decomposition[J]. Chinese Journal of Soil Science,2015,46(4):916-922.
    [25] Fontaine S,Mariotti A,Abbadie L. The priming effect of organic matter:a question of microbial competition?[J]. Soil Biology and Biochemistry,2003,35(6):837-843.
    [26] Spohn M,Kuzyakov Y. Phosphorus mineralization can be driven by microbial need for carbon[J]. Soil Biology and Biochemistry,2013,61:69-75.
    [27]廖畅,田秋香,汪东亚,等.外源碳输入对中亚热带森林深层土壤碳矿化和微生物决策群落的影响[J].应用生态学报,2016,27(9):2848-2854.Liao C,Tian Q X,Wang D Y,et al. Effects of labile carbon addition on organic carbon mineralization and microbial growth strategies in subtropical forest soils[J]. Chinese Journal of Applied Ecology,2016,27(9):2848-2854.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700