用户名: 密码: 验证码:
基于自研设备高温源诱发甲烷爆炸特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on characteristic of methane explosion induced by high-temperature source based on self-developed equipment
  • 作者:王海燕 ; 张雷 ; 郭增乐
  • 英文作者:WANG Haiyan;ZHANG Lei;GUO Zengle;College of Resource and Safety Engineering,China University of Mining and Technology(Beijing);
  • 关键词:煤自燃 ; 瓦斯爆炸 ; 甲烷爆炸 ; 高温源 ; 电火花 ; 爆炸极限 ; 爆炸压力 ; 升压时间
  • 英文关键词:coal spontaneous combustion;;gas explosion;;methane explosion;;high-temperature source;;electric spark;;explosion limit;;explosion pressure;;pressure boosting time
  • 中文刊名:MKZD
  • 英文刊名:Industry and Mine Automation
  • 机构:中国矿业大学(北京)资源与安全工程学院;
  • 出版日期:2019-04-26 16:51
  • 出版单位:工矿自动化
  • 年:2019
  • 期:v.45;No.278
  • 基金:国家重点研发计划资助项目(2016YFC0801803);; 国家自然科学基金资助项目(51874313)
  • 语种:中文;
  • 页:MKZD201905003
  • 页数:5
  • CN:05
  • ISSN:32-1627/TP
  • 分类号:14-18
摘要
采用自主研制的高温源诱发可燃气体爆炸实验系统,模拟高温源诱发甲烷爆炸,对比了高温源和电火花2种诱发方式下甲烷爆炸特性参数的异同。结果表明:高温源诱发方式下甲烷爆炸极限为5.5%~14.5%,电火花诱发方式下为5%~15.5%,高温源诱发方式在爆炸极限边界处更难引爆甲烷;电火花诱发方式下甲烷爆炸具有比高温源诱发方式更明显的温度梯度,在不同甲烷浓度下,高温源诱发方式引爆甲烷时最大爆炸压力均大于电火花诱发方式;高温源诱发方式下最大爆炸压力对应的甲烷体积分数为14.5%,电火花诱发方式下为9.5%和14.5%;各甲烷浓度下高温源诱发方式引爆甲烷时升压时间均大于电火花诱发方式。
        A self-developed experimental system for high-temperature source-induced flammable gas explosion was used to simulate methane explosion induced by high-temperature source.Similarities and differences of methane explosion characteristic parameters between high-temperature source induction mode and electric spark induction mode were compared.The results show that methane explosion limit range under high-temperature source induction mode is 5.5%-14.5%,and that under electric spark induction mode is 5%-15.5%.It is more difficult for high-temperature source to detonate methane at explosion limit boundary.The methane explosion induced by electric spark has a more obvious temperature gradient than that induced by high-temperature source.The maximum explosion pressure of methane explosion induced by temperature source is higher than that induced by electric spark at different methane concentration.Methane concentration of the maximum explosion pressure under high-temperature source induction mode is 14.5%,while that under electric spark induction mode is 9.5% and 14.5%.Pressure boosting time of methane explosion induced by high-temperature source is larger than that induced by electric spark at each methane concentration.
引文
[1]沈广辉,樊艳虹,樊斌,等.采空区瓦斯分布规律及瓦斯抽采方法的研究[J].工矿自动化,2009,35(4):95-96.
    [2]许满贵,徐精彩,文虎,等.煤矿内因火灾防治技术研究现状[J].西安科技学院学报,2001,21(1):4-7.XU Mangui,XU Jingcai,WEN Hu,et al.Current research status of mechanism and extinguishing methods of spontaneous combustion of coal mine[J].Xi'an University of Science &Technology Journal,2001,21(1):4-7.
    [3]周福宝,夏同强,史波波.瓦斯与煤自燃共存研究(Ⅱ):防治新技术[J].煤炭学报,2013,38(3):353-360.ZHOU Fubao, XIA Tongqiang, SHI Bobo.Coexistence of gas and coal spontaneous combustion(Ⅱ):new prevention and control technologies[J].Journal of China Coal Society,2013,38(3):353-360.
    [4]付明超,秦宪礼,沈斌,等.采空区自然发火监测系统的设计[J].工矿自动化,2012,38(1):70-73.FU Mingchao,QIN Xianli,SHEN Bin,et al.Design of monitoring system of spontaneous combustion in goaf[J].Industry and Mine Automation,2012,38(1):70-73.
    [5]田小龙.近距离煤层群自燃火灾防治技术的研究与应用[D].太原:太原理工大学,2006.
    [6]蒋曙光,李亚东,邹力力,等.基于气相色谱技术的采空区煤自燃火灾预测预报研究[J].工矿自动化,2010,36(6):38-40.JIANG Shuguang,LI Yadong,ZOU Lili,et al.Research of forecasting of spontaneous combustion of coal in mined-out area based on technology of gas chromatography[J].Industry and Mine Automation,2010,36(6):38-40.
    [7]薛毅,邬剑明,王俊峰.矿井自燃火灾束管监测系统应用研究[J].工矿自动化,2014,40(4):102-104.XUE Yi,WU Jianming,WANG Junfeng.Application research of mine spontaneous combustion fire monitoring system with beam tube[J].Industry and Mine Automation,2014,40(4):102-104.
    [8]AJRASH M J,ZANGANEH J,MOGHTADERI B.Effects of ignition energy on fire and explosion characteristics of dilutehybrid fuel in ventilation air methane[J].Journal of Loss Prevention in the Process Industries,2016,40:207-216.
    [9]CASHDOLLAR K L,WEISS E S,MONTGOMERY T G, et al. Post-explosion observations of experimental mine and laboratory coal dust explosions[J].Journal of Loss Prevention in the Process Industries,2007,20(4/5/6):607-615.
    [10]马秋菊.约束空间内多元气体爆炸及其转燃烧规律[D].北京:北京理工大学,2015.
    [11]李润之.点火能量与初始压力对瓦斯爆炸特性的影响研究[D].青岛:山东科技大学,2010.
    [12]黄文祥.变点火能作用下瓦斯爆炸火焰传播特征实验研究[D].西安:西安科技大学,2010.
    [13]彭飞,张兰君,高思源,等.矿井特殊气体对瓦斯爆炸特性的影响[J].煤矿安全,2011,42(4):9-13.PENG Fei,ZHANG Lanjun,GAO Siyuan,et al.Impact on the characteristics of methane explosion by special mine gases[J].Safety in Coal Mines,2011,42(4):9-13.
    [14]TARABA B,MICHALEC Z.Effect of longwall face advance rate on spontaneous heating process in the gob area-CFD modelling[J].Fuel,2011,90(8):2790-2797.
    [15]杜文锋.消防燃烧学[M].北京:中国人民公安大学出版社,1997.
    [16]卢楠,陈德展,董川.瓦斯爆炸极限及反应热力学温度的计算[J].山东师范大学学报(自然科学版),2008,23(4):54-57.LU Nan,CHEN Dezhan,DONG Chuan.Calculation of explosion limits and thermodynamics temperature for mine gas reaction[J].Journal of Shandong Normal University(Natural Science),2008,23(4):54-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700