用户名: 密码: 验证码:
强震下框架-剪力墙结构损伤破坏量化指标研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on damage indicator of frame-shear wall structure under strong earthquake
  • 作者:苏佶智 ; 刘伯权 ; 邢国华 ; 宋猛 ; 马煜东
  • 英文作者:SU Jizhi;LIU Boquan;XING Guohua;SONG Meng;MA Yudong;School of Civil Engineering,Chang'an University;
  • 关键词:抗震性能 ; 损伤指标 ; 时程分析 ; 层间位移角 ; 滞回耗能
  • 英文关键词:seismic performance;;damage indicator;;time-history analysis;;inter-storey drift angle;;hysteretic energy
  • 中文刊名:SJDC
  • 英文刊名:World Earthquake Engineering
  • 机构:长安大学建筑工程学院;
  • 出版日期:2019-06-15
  • 出版单位:世界地震工程
  • 年:2019
  • 期:v.35
  • 基金:国家自然科学基金项目(51578077);; 陕西省国际科技合作与交流计划项目(2016KW-056)
  • 语种:中文;
  • 页:SJDC201902013
  • 页数:9
  • CN:02
  • ISSN:23-1195/P
  • 分类号:110-118
摘要
为了探究能够全面评估钢筋混凝土结构抗震性能的量化指标,借助有限元软件ABAQUS对一拟建的10层框架-剪力墙结构进行了大量的非线性动力时程数值计算,对比分析了不同地震作用下最大层间位移角与滞回耗能的分布情况,从结构滞回耗能的角度揭示了破坏机制,得到主要结论如下:结构层间位移角最大的位置不一定是损伤破坏最严重或者薄弱的部位,以层间位移角作为整体结构抗震性能的判别指标离散性较大,计算结果易受所选地震波的方法及数量影响;结构滞回耗能沿楼层的分布受地震波选取方法和数量的随机性影响较小,结构底层耗能对结构整体耗能贡献最大,约占结构总耗能的60%,其余各楼层滞回耗能约占结构总滞回耗能的1%~8%;梁和柱滞回耗能主要集中于结构底部1层,总的框架梁滞回耗能仅占结构总滞回耗能的18%~22%,绝大部分地震输入能由框架柱吸收,总的框架柱滞回耗能占结构总滞回耗能的80%左右,该计算结果与实际震害中结构主要形成"柱铰"破坏机制的现象较为一致。
        In order to explore a damage indicator to fully evaluate the seismic performance of reinforced concrete structures,numerous nonlinear dynamic time-history analyses are carried out based on a 10-storey frame-shear wall structure via finite element software ABAQUS. The distribution of maximum inter-storey drift angle and hysteretic energy is analyzed,and the failure mechanism of structure is studied from the perspective of energy dissipation. The results show that the maximum inter-storey drift angle does not always occurs at the most serious damaged location or the weakest storey of structure. The dispersion is greater if the inter-storey drift angle is used as the evaluation indicator,which is susceptible to the selection and quantity of seismic waves. On the contrary,the distribution of structural hysteretic energy is less affected by the randomness of the selected seismic waves. The bottom storey dissipates the maximum energy,about 60% of total energy,while any of the other storeys. dissipates merely 1%-8%. The energy dissipation of the overall structure is mainly consumed by frame columns,accounting for about80%,and in part by frame beams,only 18%-22%. The calculation results are in agreement with the actual failure phenomena that the structural collapse is arised from the full development of column hinges.
引文
[1]熊仲明,史庆轩,李菊芳.框架结构基于能量地震反应分析及设计方法的理论研究[J].世界地震工程,2005,21(2):141-146.XIONG Zhongming,SHI Qingxuan,LI Jufang. Theoretical study on seismic response and design method of frame structures with energy method[J],World Earthquake Engineering,2005,21(2):141-146.(in Chinese)
    [2]任重翠,欧进萍.钢框架结构基于性能的耗能减振设计[C]//结构工程新进展国际论坛,2008.REN Zhongcui,OU Jingping. Performance-based design of energy dissipation systems for steel frame structures[C]//International Forum on New Progress in Structural Engineering,2008.(in Chinese)
    [3] Perino Lestuzzia,Hugo Bachmann. Displacement ductility and energy assessment from shaking table tests on RC structural walls[J]. Engineering Structures,2007,29(8):1708-1721.
    [4] Roberto Scotta,Leopoldo Tesser,Renato Vitaliani,et al. Global damage indexes for the seismic performance assessment of RC structures[J].Earthquake Engineering&Structural Dynamics,2009,38(8):1027-1049.
    [5]滕军,董志君.基于能量的超高层钢筋混凝土框架核心筒结构抗震性能分析[J].建筑结构学报,2010,31(S2):1-4.TENG Jun,DONG Zhijun. Energy based seismic resistant performance analysis for high-rise reinforced concrete frame-tube structures[J]. Journal of Building Structures,2010,31(S2):1-4.(in Chinese)
    [6]吕杨,徐龙河,李忠献,等.钢筋混凝土柱基于能量阈值的损伤准则[J].工程力学,2011,28(5):84-89.LV Yang,XU Longhe,LI Zhongxian,et al. Energy threshold based damage criterion if RC columns[J],Engineering Mechanics,2011,28(5):84-89.(in Chinese)
    [7]江辉,慎丹,刘夏润,等.基于改进Park-Ang模型的RC桥墩地震动损伤及滞回耗能特性研究[J].振动与冲击,2012,31(5):97-105.JIANG Hui,SHEN Dan,LIU Xiarun,et al. Seismic damage and hysteretic energy dissipation characteristics of a RC bridge pier based on improved Park-Ang model[J]. Journal of Vibration and Shock,2012,31(5):97-105.(in Chinese)
    [8]叶列平,程光煜,曲哲,等.基于能量抗震设计方法研究及其在钢支撑框架结构中的应用[J].建筑结构学报,2012,33(11):36-45.YE Lieping,CHENG Guangyu,QU Zhe,et al. Study on energy-based seismic design method and application on steel braced frame structures[J].Journal of Building Structures,2012,33(11):36-45.(in Chinese)
    [9]刘哲锋,周琼,陈逵.基于能量耗储能力的结构地震损伤量化研究[J].工程力学,2013,30(2):169-173.LIU Zhefeng,ZHOU Qiong,CHEN Kui. Quantitative analysis of seismic damage based on structural energy disspation and strage capability[J].Engineering Mechanics,2013,30(2):169-173.(in Chinese)
    [10] GB50010-2010.混凝土结构设计规范.北京:中国建筑工业出版社,2010.GB50010. Code for design of concrete structures[S]. Beijing:China Architectural&Building Press,2010.(in Chinese)
    [11]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.GUO Zhenhai,SHI Xudong. Principle and Analysis of Reinforced Concrete[M]. Beijing:Tsinghua University Press,2003.(in Chinese)
    [12] ARAB A A. Finite element modeling of pretensioned concrete girder:A methodological approach with applications in large strands and end zone cracking[D]. Edwardsville:Southern Iiinois University:Edwardsville,USA,2000.
    [13] LEE J,FENVES G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics,1998,124(8):892-900.
    [14] OKAMOTO S,YOSHIMURA M,KAMINOSONO T,et al. Construction and elastic properties of full-scale reinforced concrete seven-story structure:U. S-Japan cooperative research programs part1[J]. Journal of Structural and Construction Engineering,1986,366:76-84.
    [15] GB50011-2010.建筑抗震设计规范.北京:中国建筑工业出版社,2010.GB50011. Code for seismic design of buildings[S]. Beijing:China Architectural&Building Press,2010.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700