用户名: 密码: 验证码:
华龙一号非能动安全壳冷却系统循环水箱的热分层现象数值研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation on Thermal Stratification in Water Storage Tank of Passive Containment Cooling System for HPR1000
  • 作者:李军 ; 郭强 ; 李晓明 ; 喻鹏 ; 元一单 ; 刘长亮
  • 英文作者:LI Jun;GUO Qiang;LI Xiaoming;YU Peng;YUAN Yidan;LIU Changliang;Fundamental Science on Nuclear Safety and Simulation Technology Laboratory,Harbin Engineering University;Hualong Pressurized Water Reactor Technology Corporation, Ltd.;China Nuclear Power Engineering Co., Ltd.;China National Nuclear Corporation;
  • 关键词:热分层 ; 水箱 ; 非能动安全壳冷却系统 ; 华龙一号 ; CFD
  • 英文关键词:thermal stratification;;water storage tank;;passive containment cooling system;;HPR1000;;CFD
  • 中文刊名:YZJS
  • 英文刊名:Atomic Energy Science and Technology
  • 机构:哈尔滨工程大学核安全与仿真技术国防重点学科实验室;华龙国际核电技术有限公司;中国核电工程有限公司;中国核工业集团有限公司;
  • 出版日期:2018-11-27 11:44
  • 出版单位:原子能科学技术
  • 年:2019
  • 期:v.53
  • 语种:中文;
  • 页:YZJS201906005
  • 页数:8
  • CN:06
  • ISSN:11-2044/TL
  • 分类号:37-44
摘要
华龙一号核电技术采用了非能动安全壳冷却系统的先进设计。作为一种自然循环系统,系统的冷却能力与其循环水箱的水温直接相关,循环水箱中的热分层现象研究对循环系统冷却能力的准确评估以及工程设计优化均有重要的现实意义。本文基于计算流体力学(CFD)技术对循环水箱升温过程进行了三维流动传热的数值模拟。研究表明,循环水箱中存在较为明显的热分层现象,总体上呈现水池顶部温度波动大,而底部等温层较为平缓的特点,系统循环功率和循环流量均会对水箱的升温过程产生影响:功率增大、流量减小均会促使水箱内产生较明显的热分层现象,同时也会使水箱平均温度偏高,出口水温也相应较高。2列循环系统出现循环功率或流量不均衡对水箱平均温度以及出口温度的升高过程基本无明显影响,因此非能动安全壳冷却系统水箱对系统循环能起到一定的自稳定的效果。
        Passive containment cooling system, as one of advanced safety features employed in HPR1000, is a natural circulation system. Since the cooling capacity is highly depended on water temperature in water storage tank, thermal stratification phenomena in water storage tank should be well evaluated and the investigation is also meaningful for engineering design optimization. A transient simulation of heating process on the water storage tank with 3 D model was conducted by CFD method in the paper. The results show that thermal stratification occurs in the water storage tank, and the temperature at the top of the pool fluctuates greatly, while at the bottom goes mildly. Both circulation flow rate and power impact temperature increase of water body and thermal stratification in the water storage tank. Higher power and/or fewer flow rate promote thermal stratification and make water temperature in tank and on outlet of system higher. Two trains of cooling systems which run under different conditions have rare impact on formation of thermal stratification in the water storage tank and characteristic temperatures like average-temperature and outlet-temperature, which indicates that the water storage tank has self-stability on circulation of passive cooling system.
引文
[1] 荆春宁,赵科,张力友,等.“华龙一号”的设计理念与总体技术特征[J].中国核电,2017,10(4):463-467.JING Chunning,ZHAO Ke,ZHANG Liyou,et al.The design philosophy and general technical features of HPR1000[J].China Nuclear Power,2017,10(4):463-467(in Chinese).
    [2] 宋代勇,赵斌,袁霞,等.“华龙一号”能动与非能动相结合的安全系统设计[J].中国核电,2017,10(4):468-471.SONG Daiyong,ZHAO Bin,YUAN Xia,et al.Design of integrated active and passive safety systems of HPR1000[J].China Nuclear Power,2017,10(4):468-471(in Chinese).
    [3] 黄政.基于自然循环回路的非能动安全壳冷却系统数值模拟[J].原子能科学技术,2014,48(增刊):330-335.HUANG Zheng.Numerical simulation of passive containment cooling system using natural circulation loop[J].Atomic Energy Science and Technology,2014,48(Suppl.):330-335(in Chinese).
    [4] 黄政.核电厂非能动安全壳冷却系统特性研究[J].核动力工程,2014,35(6):31-36.HUANG Zheng.Analysis of a passive containment cooling system for NPPs[J].Nuclear Power Engineering,2014,35(6):31-36(in Chinese).
    [5] WANG Jianjun,GUO Xueqing,YU Shengzhi,et al.Study on the behaviors of a conceptual passive containment cooling system[J].Science and Technology of Nuclear Installations,2014(2014):358365.
    [6] BAI Jinhua,ZHAO Bo,WANG Jianjun,et al.Study on the instability of a conceptual passive containment cooling system[J].Nuclear Safety and Simulation,2015,6:321-326.
    [7] HARIHARAN K,BADRINAFTAYANA K,MURTHY S S,et al.Temperature stratification in hot-water storage tanks[J].Energy,1991,16:977-982.
    [8] HAHNE E,CHEN Y.Numerical study of flow and heat transfer characteristics in hot water stores[J].Solar Energy,1998,64:9-18.
    [9] BOUHDJAR A,HARHAD A.Numerical analysis of transient mixed convection flow in storage tank:Influence of fluid properties and aspect ratios on stratification[J].Renewable Energy,2002,25:555-567.
    [10] HAN Y M,WANG R Z,DAI Y J.Thermal stratification within the water tank[J].Renewable and Sustainable Energy Reviews,2009,13:1 014-1 026.
    [11] 程向华,厉彦忠.低温液体热分层特性分析[J].低温工程,2011(5):32-36.CHENG Xianghua,LI Yanzhong.Characteristics analysis of cryogenic thermal stratification[J].Cryogenics,2011(5):32-36(in Chinese).
    [12] 薛英霞,徐晨辉.太阳能采暖水箱温度分层的仿真分析[J].建筑热能通风空调,2014,33(2):58-60.XUE Yingxia,XU Chenhui.Analysis and simulation on temperature stratification of heat storage tank in solar heating system[J].Building Energy & Environment,2014,33(2):58-60(in Chinese).
    [13] 蔡文玉.基于CFD的太阳能分层加热储热水箱优化研究[D].浙江:浙江大学,2014.
    [14] 杨征,陈海生,王亮,等.竖直圆柱形水箱保温过程热分层现象与机理研究[J].中国电机工程学报,2015,35(6):1 420-1 428.YANG Zheng,CHEN Haisheng,WANG Liang,et al.Study on behaviour and mechanism of thermal stratification of vertical cylindrical heat storage tank in insulation process[J].Proceedings of the CSEE,2015,35(6):1 420-1 428(in Chinese).
    [15] ANSYS,Inc.ANSYS FLUENT 15.0 user’s guide[R].USA:ANSYS,Inc.,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700