用户名: 密码: 验证码:
基于多场耦合的共轨喷油器温度场仿真分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temperature Field Simulation Analysis of Common Rail Injector Based on Multi-Field Coupling
  • 作者:陈玉涛 ; 王作群 ; 龙正伟 ; 张明蕊 ; 安青松 ; 陈桂兵
  • 英文作者:Chen Yutao;Wang Zuoqun;Long Zhengwei;Zhang Mingrui;An Qingsong;Chen Guibing;Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Ministry of Education, Tianjin University;Shanghai Marine Diesel Engine Research Institute;School of Environmental Science and Engineering, Tianjin University;
  • 关键词:船用高压共轨喷油器 ; 温度场 ; 三维仿真 ; 单向流固耦合
  • 英文关键词:marine high-pressure common rail injector;;temperature field;;three-dimensional simulation;;unidirectional fluid-structure coupling
  • 中文刊名:XTFZ
  • 英文刊名:Journal of System Simulation
  • 机构:中低温热能高效利用教育部重点实验室天津大学;中国船舶重工集团公司第七一一研究所;天津大学环境科学与工程学院;
  • 出版日期:2019-07-08
  • 出版单位:系统仿真学报
  • 年:2019
  • 期:v.31
  • 语种:中文;
  • 页:XTFZ201907011
  • 页数:8
  • CN:07
  • ISSN:11-3092/V
  • 分类号:90-97
摘要
大功率高压共轨喷油器温升的准确预测直接关系到供油系统可靠性,为获得实验无法测得的温度分布,基于多物理场耦合仿真方法,建立共轨喷油器的流固耦合物理模型,发展了一种基于单向流固耦合精确计算温度分布的仿真方法,并结合与传统的以经验公式给定边界条件的方法对比,结果表明:流道中对流换热系数是随着流动状态的变化而变化,且该方法能够基于流动状态修正对流换热系数,从而提高了喷油器实际工作温度分布的预测精度;为解决这类型问题提供了指导意义。
        The reliability of high pressure common rail injector depends on the calculation accuracy of its temperature changing. Due to the temperature measurement limitation and difficulty, in order to obtain more detailed temperature distribution, a coupling physical model is established in this paper based on multi-fields coupling analysis method, and a method based on the uni-directional coupling for calculating the temperature distribution of injector accurately is developed. The results show that the convective heat transfer coefficient varies with the flow state and the multi-field coupling method can correct the convective heat transfer coefficient according to the flow state automatically, which improves the prediction accuracy of the actual temperature distribution of the injector and provides a common solution frame for similar fluid-solid coupling problems.
引文
[1]刘彦辉.柴油机喷油器常见故障分析与排除[J].柴油机,2011,33(1):54-56.Liu Yanhui.Analysis and Elimination of Common Troubles in Diesel Engine Injector[J].Diesel Engine,2011,33(1):54-56.
    [2]李士振,薛雷.油嘴温度分析与台架加速试验设计[J].内燃机与动力装置,2012(4):1-3.Li Shizhen,Xue Lei.Analysis of Nozzle Peak Temperature and Design of Bench Testing Program[J].Internal Combustion Engine&Power Plant,2012(4):1-3.
    [3]陈勇,张振东,程强.内部加热GDI喷油器综合性能研究[J].汽车工程,2017,39(3):262-268.Chen Yong,Zhang Zhendong,Cheng Qiang.An Investigation into the Comprehensive Performances of Inner Heated GDI Injector[J].Automotive Engineering,2017,39(3):262-268.
    [4]石复习,陈军.喷油温度对生物柴油雾化特性的影响研究[J].农业机械学报,2013,44(7):33-38.Shi Fuxi,Chen Jun.Influence of Injection Temperature on Atomization Characteristics of Biodiesel[J].Transactions of the Chinese Society for Agricultural Machinery,2013,44(7):33-38.
    [5]刘学荣,张翼,李静,等.温度对高压共轨喷油器喷射性能的影响[J].柴油机设计与制造,2014,20(1):7-10.Liu Xuerong,Zhang Yi,Li Jing,et al.Influence of Temperature on High Pressure Common Rail Injector Spray Performance[J].Design&Manufacture of Diesel Engine,2014,20(1):7-10.
    [6]程强,张振东,郭辉,等.GDI喷油器电-磁-热耦合分析[J].吉林大学学报(工学版),2015,45(3):806-813.Cheng Qiang,Zhang Zhendong,Guo Hui,et al.Electro-magnetic-thermal Coupling of GDI Injector[J].Journal of Jinlin University,2015,45(3):806-813.
    [7]宋学官,蔡琳,张华.ANSYS流固耦合分析与工程实例[M].北京:中国水利水电出版社,2012.Song Xueguan,Cai Lin,Zhang Hua.ANSYS fluid-solid coupling analysis and engineering examples[M].Beijing:China Water Resources and Hydropower Press,2012.
    [8]邓创华.流固耦合弱耦合算法研究[D].武汉:华中科技大学,2012.Deng Chuanghua.The Algorithm Study of Weak Coupling In Fluid-Structure interaction[D].Wuhan:Huazhong University of Science and Technology,2012.
    [9]李永乐,朱佳琪,唐浩俊.基于CFD和CSD耦合的涡激振和颤振气弹模拟[J].振动与冲击,2015,34(12):85-89.Li Yongle,Zhu Jiaqi,Tang Haojun.Aeroelastic Simulation of Vortex-induced Vibration and Flutter Based on CFD/CSD Coupling Solution[J].Journal of Vibration and Shock,2015,34(12):85-89.
    [10]Kamensky D,Hsu M,Schillinger D,et al.An Immersogeometric Variational Framework for Fluid-Structure Interaction:Application to Bioprosthetic Heart Valves[J].Comput Methods Appl Mech Eng(S0045-7825),2015,284:1005-1053.
    [11]钱若军,董石麟,袁行飞.流固耦合理论研究进展[J].空间结构,2008,14(1):3-15.Qian Ruojun,Dong Shilin,Yuan Xingfei.Advances in research on fluid-structure interaction theory[J].Spatial Structures,2008,14(1):3-15.
    [12]俞小莉,郑飞,严兆大.内燃机气缸体内表面稳态传热边界条件的研究[J].内燃机学报,1987,5(4):324-332.Yu Xiaoli,Zheng Fei,Yan Zhaoda.The Researeh of the Boundary Conditions of Steady Thermal Conduction on the Inner Surface Of Cylinder internal Combustion Engines[J].Transactions of CSICE,1987,5(4):324-332.
    [13]杨世铭,陶文铨.传热学[M].(第四版)北京:高等教育出版社,2006.Yang Shiming,Tao Wenquan.Heat transfer[M].4ed.Beijing:Higher Education Press,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700