用户名: 密码: 验证码:
高冷气温度下横向波纹隔热屏气膜冷却特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Investigation of Film Cooling Characteristics of a Transverse Ripple Heat Shield with High-Temperature Coolant
  • 作者:曾文明 ; 谭晓茗 ; 张靖周 ; 王健 ; 邓远灏
  • 英文作者:ZENG Wen-ming;TAN Xiao-ming;ZHANG Jing-zhou;WANG Jian;DENG Yuan-hao;Key Laboratory of Aero-Engine Thermal Environment and Structure,Ministry of Industry and Information Technology,College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics;AECC Sichuan Gas Turbine Establishment;
  • 关键词:加力燃烧室 ; 高冷气温度 ; 横向波纹隔热屏 ; 气膜冷却 ; 冷却效率
  • 英文关键词:Afterburner;;High cold gas temperature;;Transverse ripple shield;;Film cooling;;Cooling efficiency
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:南京航空航天大学能源与动力学院航空发动机热环境与热结构工业和信息化部重点实验室;中国航发四川燃气涡轮研究院;
  • 出版日期:2018-12-19 10:17
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.262
  • 基金:国家自然科学基金(U1508212)
  • 语种:中文;
  • 页:TJJS201904018
  • 页数:10
  • CN:04
  • ISSN:11-1813/V
  • 分类号:152-161
摘要
通过三维数值模拟的方法分别研究了高冷气温度下吹风比、开孔率以及孔排布等气动参数和结构参数对加力燃烧室横向波纹隔热屏气膜冷却效率和流动特性的影响规律。结果表明:吹风比改变时相同流向截面处波峰的温度总是高于波谷的温度,且壁面上温度呈现"锯齿状";随着吹风比的增加,隔热屏壁面冷却效率提高,在吹风比M=2.0时冷却效率达到最大值;当吹风比M≥1.5,气膜冷却效率逐渐递增,最后趋于平缓,且吹风比越大趋于平缓的流向间距越短;单位面积冷却流量相同时,气膜孔开孔率?=3.14%对隔热屏壁面的冷却效率最高,其次开孔率为?=2.18%;当单位面积冷却流量Gf≥3.990kg/(m~2·s)时,开孔率?=1.60%比开孔率?=4.90%时对隔热屏壁面的冷却效率高;相同单位面积冷却流量时,气膜孔流向间距增加,展向孔间距减小,气膜叠加效应积聚在壁面处形成有效的气膜层,使得冷却效率趋于一定值对应的流向间距短,气膜孔排布为展向间距p=4mm,流向间距s=6.25mm较其它气膜孔排布冷却效率要高。
        Three-dimensional numerical simulations were conducted to study film cooling characteristics of a transverse ripple shield cooled by high cold gas temperature. The film cooling effectiveness and the flow characteristics of transverse corrugated heat shield in afterburner were obtained on different blowing ratios,opening rates and hole arrangements. The result show that when the blowing ratio changes,the temperature of the wave peak is always higher than the temperature of the trough at the same longitudinal location,and the temperature is serrated on the wall. The film cooling effectiveness increase with the blowing ratio and reach to the maximum with the blowing ratio M=2.0. Besides,the film cooling effectiveness increase gradually and eventually flatten out as M≥1.5 and the greater the blow ratio,the shorter the flow spacing will be. Comparing different opening rates ? of the ripple shield,the cooling efficiency with ?=3.14% is bigger than ?=2.18%. When the cooling flow rate per unit area Gf≥3.990 kg/(m~2·s),the cooling efficiency with ?=1.60% is better than ?=4.90%. With the increase of the longitudinal space and the decrease of the transverse pitch,the cooling efficiency tends to a certain value and the corresponding streamwise spacing is short because of the film stacking effect in film formation. The cooling efficiency is the highest in the holes arrangement of transverse pitch p=4 mm,longitudinal space s=6.25 mm.
引文
[1]黄勇,林宇震,樊未军,等.燃烧与燃烧室[M].北京:北京航空航天大学出版社,2009.
    [2]季鹤鸣.第四代歼击机发动机加力燃烧室的技术特点[J].航空发动机,1996,(4):3-12.
    [3]唐婵,常海萍.发散孔纵向波纹隔热屏气膜冷却特性[J].航空动力学报,2009,24(1):18-24.
    [4]唐婵,常海萍,毛军逵.离散孔纵向波纹隔热屏气膜冷却特性研究[J].工程热物理学报,2007,28(3):487-489.
    [5] Champion J L,Deshaies B,Curtelin R,et al. Aerodynamical Structure of the Wall Flow over a Wavy Surface Partially Cooled by Air Injection Through Multiperforations[C]. Moissy Cramayel:37th Aerospace Sciences Meeting and Exhibit,1999.
    [6]陆永华.加力燃烧室纵向波纹隔热屏通道换热特性的试验研究[D].南京:南京航空航天大学,2002.
    [7] Funazaki K,Igarashi T,Koide Y,et al. Studies on Cooling Air Ejected over a Corrugated Wall:Its Aerodynamic Behavior and Film Effectiveness[R]. ASME2001-GT-143.
    [8] Wakeman T G,Walker A,Maclin H M. Gas Turbine Engine Multi-Hole Film Cooled Combustor Liner and Method of Manufacture[P]. US 5181379A,1990-11-15.
    [9] Singh K,Premachandran B,Ravi M R. Numerical Investigation of Film Cooling on a 2D Corrugated Surface[J]. Numerical Heat Transfer Applications,2016,(1):1-18.
    [10] Singh K,Premachandran B,Ravi M R. Experimental and Numerical Studies on Film Cooling of a Corrugated Surface[J]. Applied Thermal Engineering,2016,108:312-329.
    [11] Nicoll R A,Vdoviak J W. Multi-Hole Film Cooled Afterburner Cumbustor Liner[P]. US 5465572 1993-05-21.
    [12]常国强,常海萍,常飞,等.多孔纵向波纹表面气膜冷却效率实验研究[J].航空动力学报,2009,24(3):513-518.
    [13]常国强.正弦型波纹壁面气膜冷却研究[D].南京:南京航空航天大学,2012.
    [14]王敏敏,单勇,李江宁,等.纵向波纹隔热屏气膜冷却特性数值研究[J].推进技术,2016,37(8):1535-1542.(WANG Min-min,SHAN Yong,LI Jiang-ning,et al. Numerical Study on Film Cooling Characteristics of Longitudinal Corrugated Heat Shield[J]. Journal of Propulsion Technology,2016,37(8):1535-1542.)
    [15]王敏敏.纵向波纹隔热屏气膜冷却特性研究[D].南京:南京航空航天大学,2016.
    [16]渠立红,张靖周,谭晓茗.发散孔横向波纹隔热屏气膜冷却特性研究[J].工程热物理学报,2016,37(7):1532-1537.
    [17] Qu L,Zhang J,Tan X,et al. Numerical Investigation on Adiabatic Film Cooling Effectiveness and Heat Transfer Coefficient for Effusion Cooling over a Transverse Corrugated Surface[J]. Chinese Journal of Aeronautics,2017,30(2):677-684.
    [18]邹西凤,裘云,张炎,等.基于某发动机横向波纹隔热屏高弦比的研究[C].沈阳:中国航空学会青年科技论坛,2014.
    [19] Scrittore J J,Thole K A,Burd S W. Investigation of Velocity Profiles for Effusion Cooling of a Combustor Liner[J]. Journal of Turbomachinery,2007,129(3):518-526.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700