用户名: 密码: 验证码:
天然橡胶热解产物反应机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Reaction Mechanism of Natural Rubber's Primary Pyrolysis Products
  • 作者:杨启容 ; 邹瀚森 ; 魏鑫 ; 姚尔人 ; 钟浩文 ; 禹国军
  • 英文作者:YANG Qirong;ZOU Hansen;WEI Xin;YAO Erren;ZHONG Haowen;YU Guojun;College of Mechanical and Electrical Engineering,Qingdao University;School of Energy and Power Engineering,Xi'an Jiaotong University;School of Naval Architecture,Ocean & Civil Engineering,Shanghai Jiaotong University;Merchant Marine College,Shanghai Maritime University;
  • 关键词:天然橡胶 ; 密度泛函理论 ; 气相产物 ; 反应路径
  • 英文关键词:natural rubber;;density functional theory;;gas product;;reaction path
  • 中文刊名:XAJT
  • 英文刊名:Journal of Xi'an Jiaotong University
  • 机构:青岛大学机电工程学院;西安交通大学能源与动力工程学院;上海交通大学船舶海洋与建筑工程学院;上海海事大学商船学院;
  • 出版日期:2018-10-24 15:13
  • 出版单位:西安交通大学学报
  • 年:2019
  • 期:v.53
  • 基金:国家自然科学基金资助项目(51606117);; 中国博士后科学基金资助项目(2017M621473,2018T110396)
  • 语种:中文;
  • 页:XAJT201901015
  • 页数:8
  • CN:01
  • ISSN:61-1069/T
  • 分类号:120-127
摘要
针对天然橡胶初级热解(300~550℃)过程中的主要产物异戊二烯单体和二聚体-1,4-二甲基-4-乙烯基环己烯进一步热解生成小分子气体的生成机理展开研究,采用密度泛函理论对各个反应进行了模拟计算,得到了相关热力学参数焓变、自由能变以及动力学参数反应势垒;用Aspen plus建立一维裂解反应器模拟实验过程,得到产物分布情况。结果表明:单体的主要反应路径为氢基与单体之间的取代反应,主要产物为氢气,反应活化能为5.68kJ/mol,与通过热裂解工艺过程预测的产物分布结果相符;二聚体主要通道是先发生开环反应,然后与甲基发生取代反应,主要产物为甲烷,反应活化能为354.48kJ/mol。研究结果可为废旧轮胎的气化回收利用提供重要的理论依据。
        The generation mechanism of small molecule gas from further pyrolysis of the main products isoprene monomer and dimer-1,4-dimethyl-4-vinylcyclohexene during the primary pyrolysis(300-550℃)of natural rubber was studied.The density functional theory was used to simulate each reaction,and the related thermodynamic parameters of enthalpy changeΔHk,free energy changeΔGk and kinetic parameter reaction barrier were obtained.The Aspen plus was used to establish a one-dimensional cracking reactor simulation experiment process to obtain product distribution.The result showed that the kinetic simulation results of the monomer were consistent with the results of the software simulation of the cracking process model.The main reaction pathway was the substitution reaction between hydrogen radical and monomer,the main product was hydrogen,and the reaction activation energy was 5.68 kJ/mol,which were consistent with product distribution results predicted from the thermal cracking process.The main channel of the dimer was first the ring-opening reaction,and then the methyl groupsubstitution.The main product was methane and the activation energy of the reaction was 354.48kJ/mol.The results could provide theoretical basis for the gasification recycling of discarded tires.
引文
[1]卢娜,辛振祥.废旧橡胶资源化与环境[J].世界橡胶工业,2016,43(7):1-5.LU Na,XIN Zhenxiang.Resource utilization of waste rubber and environment[J].World Rubber Industry,2016,43(7):1-5.
    [2]LI Q,LI F,MENG A,et al.Thermolysis of scrap tire and rubber in sub/super-critical water[J].Waste Management,2017,71:311-319
    [3]TORRETTA V,RADA E C,RAGAZZI M,et al.Treatment and disposal of tyres:two EU approaches:a review[J].Waste Management,2015,45:152.
    [4]SIENKIEWICZ M,JANIK H,BORZEDOWSKA-LABUDA K,et al.Environmentally friendly polymerrubber composites obtained from waste tyres:a review[J].Journal of Cleaner Production,2017,147:560-571.
    [5]AYANOGLU A,YUMRUTAS R.Rotary kiln and batch pyrolysis of waste tire to produce gasoline and diesel like fuels[J].Energy Conversion&Management,2016,111:261-270.
    [6]MARTNEZ J D,PUY N,MURILLO R,et al.Waste tyre pyrolysis:a review[J].Renewable&Sustainable Energy Reviews,2013,23:179-213.
    [7]ACEVEDO B,BARRIOCANAL C.Fuel-oils from copyrolysis of scrap tyres with coal and a bituminous waste:influence of oven configuration[J].Fuel,2014,125(4):155-163.
    [8]LOPEZ G,AGUADO R,OLAZAR M,et al.Continuous pyrolysis of waste tyres in a conical spouted bed reactor[J].Fuel,2010,89(8):1946-1952.
    [9]CZAJCZYSKA D,KRZY6)ZYSKA R,JOUHARAH,et al.Use of pyrolytic gas from waste tire as a fuel:a review[J].Energy,2017,134:1121-1131.
    [10]ANTONIOU N,ZABANIOTOU A.Features of an efficient and environmentally attractive used tyres pyrolysis with energy and material recovery[J].Renewable&Sustainable Energy Reviews,2013,20(3):539-558.
    [11]FEMNDEZ A M,BARRIOCANAL C,ALVAREZR.Pyrolysis of a waste from the grinding of scrap tyres[J].Journal of Hazardous Materials,2012,203:236-243.
    [12]KORDOGHLI S,KHIARI B,PARASCHIV M,et al.Impact of different catalysis supported by oyster shells on the pyrolysis of tyre wastes in a single and a double fixed bed reactor[J].Waste Management,2017,67:288-297.
    [13]ABNISA F,MOHD A W D W.Optimization of fuel recovery through the stepwise co-pyrolysis of palm shell and scrap tire[J].Energy Conversion&Management,2015,99:334-345.
    [14]LIU Y,DING J,HAN K L.Molecular dynamics simulation of the high-temperature pyrolysis of methylcyclohexane[J].Fuel,2018,217:185-192.
    [15]ZHAO T,LI T,XIN Z,et al.A reaxFF-based molecular dynamics simulation of the pyrolysis mechanism for polycarbonate[J].Energy&Fuels,2018,32(2):2156-2162.
    [16]梁悦,黄茂芳,曾宗强.不同制备工艺的天然橡胶裂解色谱质谱分析[J].热带作物学报,2011,32(7):1364-1371.LIANG Yue,HUANG Maofang,ZENG Zongqiang.Pyrolysis GC-MS study of natural rubber for different preparative processes[J].Chinese Journal of Tropical Crops,2011,32(7):1364-1371.
    [17]孙玉海.橡胶的热裂解机理及动力学研究[D].南宁:广西大学,2004.
    [18]李震宇,贺伟,杨金龙,等.密度泛函理论及其数值方法新进展[J].化学进展,2005,17(2):192-202.LI Zhenyu,HE Wei,YANG Jinlong,et al.Recent progress in density functional theory and its numerical methods[J].Progress in Chemistry,2005,17(2):192-202.
    [19]黄金保,刘朝,童红,等.O-乙酰基吡喃木糖热解反应机理的理论研究[J].燃料化学学报,2013,41(3):285-293.HUANG Jinbao,LIU Chao,TONG Hong,et al.Theoretical studies on pyrolysis mechanism of O-acetyl-xylopyranose[J].Journal of Fuel Chemistry and Technology,2013,41(3):285-293.
    [20]郝玉兰,张红梅,李金莲,等.1-丁烯热裂解自由基反应模型的建立及验证[J].化工科技,2018,26(1):36-40.HAO Yulan,ZHANG Hongmei,LI Jinlian,et al.Establishment and verification of steam cracking radical reaction model of 1-butene[J].Science&Technology in Chemical Industry,2018,26(1):36-40.
    [21]AND K H W,ZHANG J.Mechanistic study of thermal decomposition of isoprene(2-methyl-1,3-butadiene)using flash pyrolysis supersonic jet VUV photoionization mass spectrometry[J].Journal of Physical Chemistry:A,2007,111(45):11487-11492.
    [22]李金莲,张红梅,李春秀,等.1-丁烯热裂解反应机理的数值模拟[J].石油学报(石油加工),2016,32(5):1055-1061.LI Jinlian,ZHANG Hongmei,LI Chunxiu,et al.Numerical simulation on reaction mechanism of 1-butene pyrolysis[J].Acta Petrolei Sinica(Petroleum Processing Section),2016,32(5):1055-1061.
    [23]杜鸟锋,甯红波,李泽荣,等.1,3-丁二烯热裂解的动力学计算与模型研究[J].物理化学学报,2016(2):453-464.DU Niaofeng,NING Hongbo,LI Zerong,et al.Kinetic calculation and modeling study of 1,3-butadiene pyrolysis[J].Acta Physico-Chimica Sinica,2016(2):453-464.
    [24]任铭琪,孙维,张红梅,等.1-戊烯热裂解反应机理的数值模拟[J].广西大学学报(自然科学版),2017(6):2283-2290.REN Mingqi,SUN Wei,ZHANG Hongmei,et al.Molecular simulation on pyrolysis mechanism of 1-pentene[J].Journal of Guangxi University(Natural Science Edition),2017(6):2283-2290.
    [25]田红,姚灿,尹艳山,等.5-5′型木质素二聚体高温热解微观化学反应机理研究[J].材料导报,2016,30(22):152-157.TIAN Hong,YAO Can,YIN Yanshan,et al.Microscopic chemical reaction mechanism study of the 5-5′type lignin dipolymer under high temperature pyrolysis[J].Materials Review,2016,30(22):152-157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700