用户名: 密码: 验证码:
丛枝菌根控制稻田氮排放研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Advances in Arbuscular Mycorrhiza to Control Nitrogen Loss from Paddy Fields
  • 作者:恽雯斐 ; 尤朝阳 ; 张淑娟 ; 张俐 ; 徐海阳 ; 郭欣悦
  • 英文作者:YUN Wenfei;YOU Zhaoyang;ZHANG Shujuan;ZHANG Li;XU Haiyang;GUO Xinyue;College of Urban Construction, Nanjing Tech University;
  • 关键词:丛枝菌根 ; 稻田 ; ; 排放 ; 地表径流 ; 渗漏淋洗 ; 气态损失
  • 英文关键词:arbuscular mycorrhiza(AM);;paddy field;;nitrogen;;emission;;runoff;;leaching;;gaseous loss
  • 中文刊名:FJKS
  • 英文刊名:Environmental Science & Technology
  • 机构:南京工业大学城市建设学院;
  • 出版日期:2019-03-15
  • 出版单位:环境科学与技术
  • 年:2019
  • 期:v.42
  • 基金:江苏省自然科学基金——青年科学基金项目:丛枝菌根:控制农田氮磷输出的新理念(BK20160689)
  • 语种:中文;
  • 页:FJKS201903008
  • 页数:9
  • CN:03
  • ISSN:42-1245/X
  • 分类号:66-74
摘要
氮肥过量施加促进了稻田的氮排放,从而加剧了水体污染和温室效应,这已成为各国可持续发展面临的共同难题。植物根系和丛枝菌根真菌形成的共生结构(丛枝菌根),不仅能够提高水稻的产量和品质,而且在控制稻田氮面源污染方面拥有巨大应用潜力。文章基于控制稻田氮排放的重大意义,指出了现有氮排放控制手段的效果和不足之处,围绕丛枝菌根的生理生态特性,总结了丛枝菌根在菜地、草地、农田、森林生态系统中的氮减排功能,预测了丛枝菌根应用于稻田氮减排的经济效益和环境效益,探讨了丛枝菌根削减稻田氮排放的植物学、微生物学和土壤学机制,并提出了目前研究面临的瓶颈问题、难点和解决方案,最终为丛枝菌根控制稻田氮排放的深入研究提供理论支撑。
        Increase in nitrogen loss from paddy fields due to excessive use of nitrogen fertilizers exacerbates water pollution and greenhouse effects, becoming a common challenge for sustainable development in many countries. The arbuscular mycorrhiza, a symbiosis formed by plant roots and arbuscular mycorrhizal fungi, not only increases the quality and quantity of rice but also has great potential in controlling nitrogen loss from paddy fields. The effects and deficiencies of existing methods of controlling nitrogen emission were summarized. Based on the physiological and ecological characteristics of arbuscular mycorrhiza, the effects of arbuscular mycorrhiza on nitrogen loss from vegetable fields, grasslands, farmland and forest ecosystems were analyzed, and both economic and environmental benefits from arbuscular mycorrhiza in reducing nitrogen loss from paddy fields were predicted as well. The botanic, microbiological, and soil mechanics of arbuscular mycorrhiza of reducing nitrogen emissions from paddy fields were discussed. Difficulties faced by current research were summarized, followed by the corresponding solutions. The study would definitely provide theoretical support for further research of arbuscular mycorrhiza in controlling nitrogen pollution from paddy fields.
引文
[1]方福平.我国稻田生态服务价值的影响因素与生态补偿机制研究[D].武汉:华中农业大学,2016.Fang Fuping.Influencing Factors of Ecosystem Service Value of Paddy Field in China and the Ecosystem Compensation for Rice Production[D].Wuhan:Huazhong Agricultural University,2016.
    [2]宋亚娜,林艳,陈子强.氮肥水平对稻田细菌群落及N2O排放的影响[J].中国生态农业学报,2017,25(9):1266-1275.Song Yana,Lin Yan,Chen Ziqiang.Effect of nitrogen fertilizer level on bacterial community and N2O emission in paddy soil[J].Chinese Journal of Eco-agriculture,2017,25(9):1266-1275.
    [3]Peng S,Buresh R J,Huang J,et al.Improving Nitrogen Fertilization in Rice by Site-specific N Management[M].Berlin:Springer Netherlands,2011.
    [4]张福锁,王激清,张卫峰,等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2008,45(5):915-924.Zhang Fusuo,Wang Jiqing,Zhang Weifeng,et al.Status of utilization rate and its improving approaches of fertilizers for main food crops in China[J].Acta Pedologica Sinica,2008,45(5):915-924.
    [5]Lam S K,Suter H,Mosier A R,et al.Using nitrification inhibitors to mitigate agricultural N2O emission:a doubleedged sword[J].Global Change Biology,2016,23(2):485-489.
    [6]Ciais P,Sabine C,Bala G,et al.Carbon and Other Biogeochemical Cycles:Climate Change 2013:The Physical Science Basis[C].Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2013:159-254.
    [7]Rodhe H A.Comparison of the contribution of various gases to the greenhouse effect[J].Science,1990,248(4960):1217-1219.
    [8]Tian H,Ren W,Tao B,et al.Climate extremes and ozone pollution:a growing threat to China’s food security[J].Ecosystem Health&Sustainability,2016,2(1):1-10.
    [9]Zhang Y,Wang H,Liu S,et al.Identifying critical nitrogen application rate for maize yield and nitrate leaching in a Haplic Luvisol soil using the DNDC model[J].Science of the Total Environment,2015,514:388-398.
    [10]焦少俊,胡夏民,潘根兴,等.施肥对太湖地区青紫泥水稻土稻季农田氮磷流失的影响[J].生态学杂志,2007,26(4):495-500.Jiao Shaojun,Hu Xiamin,Pan Genxing,et al.Effects of fertilization on nitrogen and phosphorus runoff loss from Qingzini paddy soil in Taihu Lake region during rice growth season[J].Chinese Journal of Ecology,2007,26(4):495-500.
    [11]Chen X,Cui Z,Fan M,et al.Producing more grain with lower environmental costs[J].Nature,2014,514(7523):486-502.
    [12]Wang H,Zhang Y,Chen A,et al.An optimal regional nitrogen application threshold for wheat in the North China Plain considering yield and environmental effects[J].Field Crops Research,2017,207:52-61.
    [13]Cao Y,Yin B.Effects of integrated high-efficiency practice versus conventional practice on rice yield and N fate[J].Agriculture Ecosystems&Environment,2015,202:1-7.
    [14]Tan G,Wang H,Xu N,et al.Biochar amendment with fertilizers increases peanut N uptake,alleviates soil N2O emissions without affecting NH3volatilization in field experiments[J].Environmental Science&Pollution Research:International,2018(5):1-10.
    [15]Wang S,Shan J,Xia Y,et al.Different effects of biochar and a nitrification inhibitor application on paddy soil denitrification:a field experiment over two consecutive ricegrowing seasons[J].Science of the Total Environment,2017,593/594(S):347-356.
    [16]Sun H,Zhang H,Powlson D,et al.Rice production,nitrous oxide emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro-6-(trichloromethyl)-pyridine[J].Field Crops Research,2015,173(9):1-7.
    [17]Soares J R,Cantarella H,Mldc M.Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors[J].Soil Biology&Biochemistry,2012,52(8):82-89.
    [18]Zaman M,Blennerhassett J D,Saggar S.Effects of the different rates of urease and nitrification inhibitors on gaseous emissions of ammonia and nitrous oxide,nitrate leaching and pasture production from urine patches in an intensive grazed pasture system[J].Agriculture Ecosystems&Environment,2010,136(3/4):236-246.
    [19]Coskun D,Britto D T,Shi W,et al.Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition[J].Nature Plants,2017,3(6):1-10.
    [20]张淑娟,王立,马放,等.丛枝菌根真菌与化肥共施对水稻品质的改善作用[J].哈尔滨工业大学学报,2015,47(2):19-24.Zhang Shujuan,Wang Li,Ma Fang,et al.Effect of interaction between inoculation with arbuscular mycorrhizal fungi and fertilization on rice quality[J].Journal of Harbin Institute of Technology,2015,47(2):19-24.
    [21]Zhang S J,Wang L,Ma F,et al.Is resource allocation and grain yield of rice altered by inoculation with arbuscular mycorrhizal fungi[J].Journal of Plant Ecology,2015,8(4):436-448.
    [22]Zhang S J,Wang L,Ma F,et al.Reducing nitrogen runoff from paddy fields with arbuscular mycorrhizal fungi under different fertilizer regimes[J].Journal of Environmental Sciences,2016,46(8):92-100.
    [23]Zhang S J,Li W,Fang M,et al.Can arbuscular mycorrhiza and fertilizer management reduce phosphorus runoff from paddy fields[J].Journal of Environmental Sciences,2015,33(7):211-218.
    [24]Harley J L,Smith S E.Mycorrhizal symbiosis[J].Quarterly Review of Biology,2008,3(3):273-281.
    [25]刘润进,陈应龙.菌根学[M].北京:科学出版社,2007.Liu Runjin,Chen Yinglong.Mycorrhizology[M].Beijing:Science Press,2007.
    [26]Smith S E,Smith F A.Roles of arbuscular mycorrhizas in plant nutrition and growth:new paradigms from cellular to ecosystem scales[J].Annual Review of Plant Biology,2011,62(1):227-250.
    [27]Rillig M C,Mummey D L.Mycorrhizas and soil structure[J].New Phytologist,2006,171(1):41-53.
    [28]Bago B,Shachar Hill Y.Carbon metabolism and transport in arbuscular mycorrhizas[J].Plant Physiology,2000,124(3):949-958.
    [29]Besserer A,Bécard G,Jauneau A,et al.GR24,a synthetic snalog of strigolactones,stimulates the mitosis and growth of the arbuscular mycorrhizal fungus gigaspora rosea by boosting its energy metabolism[J].Plant Physiology,2009,148(1):402-414.
    [30]Gomez RV,Fermas S,Brewer PB,et al.Strigolactone inhibition of shoot branching[J].Nature,2008,455(7210):189-194.
    [31]Siciliano V,Genre A,Balestrini R,et al.Transcriptome analysis of arbuscular mycorrhizal roots during development of the prepenetration apparatus[J].Plant Physiology,2007,144(3):1455-1466.
    [32]Genre A,Chabaud M,Timmers T,et al.Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in medicago truncatula root epidermal cells before infection[J].Plant Cell,2005,17(12):3489-3499.
    [33]Gus-Mayer S,Naton B,Hahlbrock K,et al.Local mechanical stimulation induces components of the pathogen defense response in parsley[J].Proc Natl Acad Sci USA,1998,95(14):8398-8403.
    [34]Opik M,Moora M,Liira J,et al.Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe[J].Journal of Ecology,2010,94(4):778-790.
    [35]刘润进,焦惠,李岩,等.丛枝菌根真菌物种多样性研究进展[J].应用生态学报,2009,20(9):2301-2307.Liu Runjin,Jiao Hui,Li Yan,et al.Research advances in species diversity of arbuscular mycorrhial fungi[J].Chinese Journal of Applied Ecology,2009,20(9):2301-2307.
    [36]Chen X W,Wu F Y,Li H,et al.Mycorrhizal colonization status of lowland rice(Oryza sativa L.)in the southeastern region of China[J].Environmental Science&Pollution Research,2016,24(6):1-9.
    [37]Vallino M,Fiorilli V,Bonfante P.Rice flooding negatively impacts root branching and arbuscular mycorrhizal colonization,but not fungal viability[J].Plant Cell&Environment,2014,37(3):557-572.
    [38]Maiti D,Singh R K,Variar M.Rice-based crop rotation for enhancing native arbuscular mycorrhizal(AM)activity to improve phosphorus nutrition of upland rice(Oryza sativa L.)[J].Biology&Fertility of Soils,2012,48(1):67-73.
    [39]Secilia J,Bagyaraj D J.Selection of efficient vesicular-arbuscular mycorrhizal fungi for wetland rice:a preliminary screen[J].Mycorrhiza,1994,4(6):265-268.
    [40]Solaiman M Z,Hirata H.Effect of arbuscular mycorrhizal fungi inoculation of rice seedlings at the nursery stage upon performance in the paddy field and greenhouse[J].Plant&Soil,1997,191(1):1-12.
    [41]Fester T.Arbuscular mycorrhiza[EB/OL].2010.http://www.scivit.de/blog/.
    [42]Lazcano C,Barrios Masias F H,Jackson L E.Arbuscular mycorrhizal effects on plant water relations and soil greenhouse gas emissions under changing moisture regimes[J].Soil Biology&Biochemistry,2015,74:184-192.
    [43]Cavagnaro T R,Barrios-Masias F H,Jackson L E.Arbuscular mycorrhizas and their role in plant growth,nitrogen interception and soil gas efflux in an organic production system[J].Plant&Soil,2012,353(1/2):181-194.
    [44]Bender S F,Conen F,Heijden M.Mycorrhizal effects on nutrient cycling,nutrient leaching and N2O production in experimental grassland[J].Soil Biology&Biochemistry,2015,80(80):283-292.
    [45]Asghari H R,Cavagnaro T R.Arbuscular mycorrhizas enhance plant interception of leached nutrients[J].Functional Plant Biology,2011,38(3):219-226.
    [46]Martinez Garcia L B,Deyn G B,Pugnaire F I,et al.Symbiotic soil fungi enhance ecosystem resilience to climate change[J].Global Change Biology,2017,23(12):5228-5236.
    [47]Storer K,Coggan A,Ineson P,et al.Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2O hotspots[J].New Phytologist,2017:1-11.
    [48]Haines B L,Best G R.Glomus mosseae,endomycorrhizal with Liquidambar styraciflua L.seedlings retards NO3,N2Oand NH4nitrogen loss from a temperate forest soil[J].Plant&Soil,1976,45(1):257-261.
    [49]Heijden M,Streitwolfengel R,Riedl R,et al.The mycorrhizal contribution to plant productivity,plant nutrition and soil structure in experimental grassland[J].New Phytologist,2010,172(4):739-752.
    [50]Oehl F,Sieverding E,M?der P,et al.Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi[J].Oecologia,2004,138(4):574-583.
    [51]Yoneyama K,Xie X,Dai K,et al.Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol,the host recognition signal for arbuscular mycorrhizal fungi and root parasites[J].Planta,2007,227(1):125-132.
    [52]Sheng M,Lalande R,Hamel C,et al.Effect of long-term tillage and mineral phosphorus fertilization on arbuscular mycorrhizal fungi in a humid continental zone of Eastern Canada[J].Plant&Soil,2013,369(1/2):599-613.
    [53]Chen Y L,Ye J S,Wan S Q,et al.Long term fertilization modifies the biodiversity of arbuscular mycorrhizal fungi in a temperate steppe in Inner Mongolia[J].Soil Biology&Biochemistry,2014,69(1):371-381.
    [54]Solaiman M Z,Hirata H.Effects of indigenous arbuscular mycorrhizal fungi in paddy fields on rice growth and N,P,K nutrition under different water regimes[J].Soil Science&Plant Nutrition,1995,41(3):505-514.
    [55]张淑娟.丛枝菌根-稻田生态系统对氮磷的削减功能研究[D].哈尔滨:哈尔滨工业大学,2014.Zhang Shujuan.Study on Reduction in Nitrogen and Phosphorus in Arbuscular Mycorrhiza-Paddy Field Ecosystem[D].Harbin:Harbin Institute of Technology,2014.
    [56]Mardhiah U,Caruso T,Gurnell A,et al.Arbuscular mycorrhizal fungal hyphae reduce soil erosion by surface water flow in a greenhouse experiment[J].Applied Soil Ecology,2016,99:137-140.
    [57]Wilson G W T,Rice C W,Rillig M C,et al.Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi:results from long-term field experiments[J].Ecology Letters,2009,12(5):452-461.
    [58]Veresoglou S D,Chen B,Rillig M C.Arbuscular mycorrhiza and soil nitrogen cycling[J].Soil Biology&Biochemistry,2012,46(1):53-62.
    [59]Hodge A,Storer K.Arbuscular mycorrhiza and nitrogen:implications for individual plants through to ecosystems[J].Plant&Soil,2015,386(1/2):1-19.
    [60]Hawkins H J,Johansen A,George E,et al.Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi[J].Plant&Soil,2000,226(2):275-285.
    [61]Hodge A,Campbell C D,Fitter A H.An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material[J].Nature,2001,413(6853):297-299.
    [62]Hodge A,Fitter A H.Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling[J].Proceedings of the National Academy of Science of the United States of America,2010,107(31):13754-13759.
    [63]Heijden M V D H.Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems[J].Ecology,2010,91(4):1163-1171.
    [64]K?hl L,Heijden M G A V D.Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching[J].Soil Biology&Biochemistry,2016,94:191-199.
    [65]Corkidi L,Merhaut D J,Allen E B,et al.Effects of mcorrhizal colonization on nitrogen and phosphorus leaching from nursery containers[J].Horticulture,2011,46(11):1472-1479.
    [66]Bowles T M,Jackson L E,Cavagnaro T R.Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes[J].Global Change Biology,2017,24(1):171-182.
    [67]Bender S F,Conen F,Heijden M.Mycorrhizal effects on nutrient cycling,nutrient leaching and N2O production in experimental grassland[J].Soil Biology&Biochemistry,2015,80(80):283-292.
    [68]Asghari H R,Cavagnaro T R.Mycorrhizas effects on nutrient interception in two riparian grass species[J].Eurasian Journal of Soil Science,2014,3(4):274-285.
    [69]Veresoglou S D,Sen R,Mamolos A P,et al.Plant species identity and arbuscular mycorrhizal status modulate potential nitrification rates in nitrogen-limited grassland soils[J].Journal of Ecology,2011,99(6):1339-1349.
    [70]Chen Y L,Chen B D,Hu Y J,et al.Direct and indirect influence of arbuscular mycorrhizal fungi on abundance and community structure of ammonia oxidizing bacteria and archaea in soil microcosms[J].Pedobiologia,2013,56(4/5/6):205-212.
    [71]Amora Lazcano E,Vázquez M M,Azcón R.Response of nitrogen-transforming microorganisms to arbuscular mycorrhizal fungi[J].Biology&Fertility of Soils,1998,27(1):65-70.
    [72]Veresoglou S D,Shaw L J,Hooker J E,et al.Arbuscular mycorrhizal modulation of diazotrophic and denitrifying microbial communities in the(mycor)rhizosphere of Plantago lanceolata[J].Soil Biology&Biochemistry,2012,53:78-81.
    [73]高嵩涓,曹卫东,白金顺,等.湘南红壤稻田AOA-amoA、narG、nosZ基因丰度及其环境影响因子[J].中国土壤与肥料,2017(1):21-27.Gao Songjuan,Cao Weidong,Bai Jinshun,et al.Abundance and environmental impact factors of AOA-amoA,narG,nosZ genes in rice fields in north Hunan[J].Soil and Fertilizer Science,2017(1):21-27.
    [74]Guo H Y,Zhu J G,Wang X R,et al.Case study on nitrogen and phosphorus emissions from paddy field in Taihu Region[J].Environmental Geochemistry&Health,2004,26(2):209-219.
    [75]田慧,刘晓蕾,盖京苹,等.球囊霉素及其作用研究进展[J].土壤通报,2009(5):1215-1220.Tian Hui,Liu Xiaolei,Ge Jingping,et al.Research progress on glomalin and its effects[J].Chinese Journal of Soil Science,2009(5):1215-1220.
    [76]Rillig M C,Hoye A T,Carran A.Minimal direct contribution of arbuscular mycorrhizal fungi to DOC leaching in grassland through losses of glomalin-related soil protein[J].Soil Biology&Biochemistry,2006,38(9):2967-2970.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700