用户名: 密码: 验证码:
锂硫电池中的石墨烯掺杂
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Doped-Graphene in Lithium-Sulfur Batteries
  • 作者:杨蓉 ; 李兰 ; 任冰 ; 陈丹 ; 陈利萍 ; 燕映霖
  • 英文作者:Rong Yang;Lan Li;Bing Ren;Dan Chen;Liping Chen;Yinglin Yan;School of Science, Xi'an University of Technology;Shaanxi Applied Physics and Chemistry Research Institute(CNGC213);School of Materials Science and Engineering, Xi'an University of Technology;
  • 关键词:锂硫电池 ; 正极材料 ; 石墨烯 ; 掺杂
  • 英文关键词:lithium-sulfur battery;;cathode material;;graphene;;doping
  • 中文刊名:HXJZ
  • 英文刊名:Progress in Chemistry
  • 机构:西安理工大学理学院;陕西省应用物理化学研究所;西安理工大学材料科学与工程学院;
  • 出版日期:2018-11-24
  • 出版单位:化学进展
  • 年:2018
  • 期:v.30;No.223
  • 基金:国家国际科技合作专项(No.2015DFR50350);; 国家自然科学基金项目(No.21503166);; 陕西省科技计划项目(No.2017GY-160);; 陕西省自然科学基础研究计划(No.2017JQ5055)资助~~
  • 语种:中文;
  • 页:HXJZ201811009
  • 页数:11
  • CN:11
  • ISSN:11-3383/O6
  • 分类号:91-101
摘要
锂硫电池是以锂为负极,单质硫为正极的二次电池,具有高达1675 mA·h/g的比容量及2600 W·h/kg的比能量密度。理论上讲,相较于现有的锂离子电池,锂硫电池可使容量扩展5倍,这使其成为最有前景的锂离子电池。由于硫正极的绝缘性以及充放电过程中活性物质易溶于电解液,导致其可实现的能量密度远低于理论值。异原子掺杂石墨烯因具有优异的导电性,且对多硫化锂(LiPS)具有强的吸附作用而被广泛应用于锂硫电池,有效缓解了"穿梭效应",提高了电池的循环稳定性。本文主要从单原子掺杂、双原子掺杂两方面综述了异原子(如N,P,S,B)掺杂石墨烯在锂硫电池领域的研究现状,详细分析了其应用于锂硫电池的作用机理,并从掺杂量、掺杂形式、掺杂位置等方面对电池性能的提升进行了梳理和展望。
        Lithium-sulfur(Li-S) battery is a kind of rechargeable batteries with lithium as negative electrode and sulfur as positive electrode. It has a high theoretical specific capacity of 1675 mA·h/g and a specific energy density of 2600 W·h/kg. Theoretically, Li-S batteries can boost capacity fivefold over the current lithium-ion batteries, enabling it as a candidate of the most promising lithium-ion batteries. Due to the insulativity of sulfur and the easy dissolution of sulfur as active material to form polysulfide ions as electrochemical reaction intermediate material in the electrolyte during the process of charging and discharging, the poor cycle stability and high self-discharge of Li-S batteries result in the realizable energy density achieved far below the theoretical value. In this review, we target heteroatom-doped graphene, which has been widely used in Li-S batteries because of its retained excellent conductivity of graphene as well as strong adsorption to lithium polysulfide(LiPS) derived from a certain amount of defects and active sites of doped graphene. The adsorption can effectively alleviate the "shuttle effect" in the charge and discharge process and improve the cycling stability and cycling rate performance of Li-S batteries. This paper reviews current research state of heteroatom-doped graphene(such as N, P, S, B) in the Li-S batteries in terms of single-atom doping and diatomic doping. The advantages and mechanism of nitrogen-doped, nitrogen-sulfur co-doped and other doped graphene applied to Li-S batteries are analyzed utterly. Finally, the effect of battery performance is classified based on doping amount, doping form, doping location, and so on. The development direction and prospect of heteroatom-doped graphene are also predicted and forecast.
引文
[1] 吕鹏(Lv P), 冯奕钰(Feng Y Y), 张学全(Zhang X Q), 李瑀(Li Y), 封伟(Feng W). 中国科学:技术科学(Science China Technologica), 2010, 11(11): 1247.
    [2] Li G X, Sun J H, Hou W P, Jiang S D, Huang Y, Geng J X. Nature Communications, 2016, 7: 10601.
    [3] Zhou X Y, Liao Q C, Tang J J, Bai T, Chen F, Yang J. Journal of Electroanalytical Chemistry, 2016, 768: 55.
    [4] Li Y Y, Wang L, Gao B, Li X X, Cai Q F, Li Q W, Peng X. Electrochimica Acta, 2017, 229: 352.
    [5] Li Z, Jiang Y, Yuan L X, Yi Z Q, Wu C, Liu Y, Strasser P, Huang Y H. ACS Nano, 2014, 8: 9295.
    [6] Li H, Sun L, Wang G. ACS Applied Materials & Interfaces, 2016, 8: 6061.
    [7] Cheng X B. Annual Meeting of China Chemical Industry Association, Beijing, 2015.
    [8] Guo J, Xu Y, Wang C. Nano Letters, 2011, 11: 4288.
    [9] Ma L, Zuang H L, Wei S Y, Hendrickson D E, Kim M S, Cohn G, Hennig R G, Archer L A. ACS Nano, 2016, 10: 1050.
    [10] Zeng L, Jiang Y, Xu J, Wang M, Li W, Yu Y. Nanoscale, 2015, 7: 10940.
    [11] Shi Z, Jin G, Wang J, Zhang J. Journal of Electroanalytical Chemistry, 2017, 795: 26.
    [12] Lei F, Zuang H L, Zhang K H, Cooper V R, Li Q, Lu Y Y. Adv. Sci., 2016, 3: 1600175.
    [13] Li Z, Huang Y, Yuan L, Hao Z X, Huang Y H. Carbon, 2015, 92: 41.
    [14] Yan L L, Wang X X, Zhao S C, Li Y Q, Gao Z, Zhang B, Cao M S, Qin Y. ACS Applied Materials & Interfaces, 2017, 9: 11116.
    [15] Huang J K, Zhuang T Z, Zhang Q, Peng H J, Chen C M, Wei F. ACS Nano, 2015, 9: 3002.
    [16] Cao J, Chen C, Zhao Q, Zhang N, Lu Q Q, Wang X Y, Niu Z Q, Chen J. Advanced Materials, 2016, 28: 9629.
    [17] Hu X F, Leng K T, Zhang C J, Luo J Y. RSC Advances, 2018, 8: 18502.
    [18] Papandrea B, Xu X, Xu Y, Chen C Y, Lin Z Y, Wang G M, Luo Y Z, Liu M, Huang Y, Mai L Q, Duan X F. Nano Research, 2016, 9: 240.
    [19] Yao X Y, Huang N, Han F D, Zhang Q, Wan H L, Mwizerwaet J P, Wang C S, Xu X X. Advanced Energy Materials, 2017, 1602923.
    [20] Hu G, Xu C, Sun Z, Wang S G, Cheng H M, Li F, Ren W C. Advanced Materials, 2016, 28: 1603.
    [21] Lu S, Cheng Y, Wu X, Liu J. Nano Letters, 2013, 13: 2485.
    [22] 杨蓉(Yang R), 李兰(Li L), 王黎晴(Wang L Q), 付欣(Fu X), 燕映霖(Yan Y L), 陈利萍(Chen L P), 路蕾蕾(Lu L L). 化工学报(CIESC Journal), 2017, 68(11): 4333.
    [23] Chen F B, Wang Y N, Wu B R, Xiong Y K, Liao W L, Wu F, Sun Z. Journal of Inorganic Materials, 2014, 29: 627.
    [24] Yang Y, Yu G, Cha J J, Wu H, Vosqueritchian M, Yao Y, Bao Z, Cui Y. ACS Nano, 2011, 5: 9187.
    [25] Chang C H, Chung S H, Manthiram A. Journal of Materials Chemistry A, 2015, 3: 18829.
    [26] Lei W, Dong W, Zhang F, Jin J. Nano Letters, 2013, 13: 4206.
    [27] Song M K, Zhang Y, Cairns E J. Nano Letters, 2013, 13: 5891.
    [28] Liao H, Wang H, Ding H, Meng X S, Xu H, Wang B S, Ai X P, Wang C. Journal of Materials Chemistry A, 2016, 4: 7416.
    [29] Liu J, Yuan L, Yuan K, Li Z, Hao Z, Xiang J, Huang Y. Nanoscale, 2016, 8: 13638.
    [30] Li Z, Zhang J, Lou X W. Angewandte Chemie, 2015, 54: 12886.
    [31] An T H, Deng D R, Lei M, Wu Q H, Tian Z W, Zheng M S, Dong Q F. J. Mater. Chem. A, 2016, 4: 12858.
    [32] Liu X, Huang J Q, Zhang Q, Mai L Q. Advanced Materials, 2017, 29: 1601759.
    [33] Cui Z, Zu C, Zhou W, Manthiram A, Goodenough J B. Advanced Materials, 2016, 28: 6926.
    [34] Ma G Q, Wen Z Y, Wang Q S, Jin J, Wu X W, Zhang J C. Journal of Inorganic Materials, 2015, 30: 913.
    [35] Hao Z, Yuan L, Chen C, Xiang J W, Li Y Y, Huang Z M, Hu P, Huang Y H. Journal of Materials Chemistry A, 2016, 45: 17711.
    [36] 李健(Li J), 官亦标(Guan Y B), 傅凯(Fu K), 苏岳锋(Su Y F), 包丽颖(Bao L Y), 吴锋(Wu F). 化学进展(Progress in Chemistry), 2014, 26(7): 1233.
    [37] 李宛飞(Li W F), 刘美男(Liu M N), 王健(Wang J), 张跃钢(Zhang Y G). 物理化学学报(Acta Physico-Chimica Sinica), 2017, 33(1): 165.
    [38] Song J, Xu T, Gorgin M L, Zhu P Y, Lv D P, Jiang Y B, Chen Y S, Duan Y H, Wang D H. Advanced Functional Materials, 2014, 24: 1243.
    [39] Wang H, Yang Y, Liang Y, Robinson J T, Li Y G, Jackson A, Cui Y, Dai H J. Nano Letters, 2011, 11: 2644.
    [40] Mikhaylik Y V, Akridge J R. Journal of the Electrochemical Society, 2004, 151: A1969.
    [41] 陈旭(Chen X), 何大平(He D P), 木士春(Mu S C). 化学进展(Progress in Chemistry), 2013, 25(8): 1292.
    [42] Hou T Z, Peng H J, Huang J Q, Zhang Q, Li B. 2D Materials, 2015, 2.
    [43] Qiu Y C, Li W F, Zhao W, Li G Z, Hou Y, Liu M N, Zhou L S, Ye F M, Li H F, Wei Z H, Yang S H, Daun W H, Ye Y F, Guo J H, Zhang Y G. Nano Letters, 2014, 14: 4821.
    [44] Li L, Zhou G M, Yin L C, Koratkar N, Li F, Cheng H M. Carbon, 2016, 108: 120.
    [45] Hao Y, Li X F, Sun X L, Wang C L. Materials Science and Engineering B, 2016, 213: 83.
    [46] Liu S K, Hong X B, Li Y J, Xu J, Zhen C M, Xie K. Chinese Chemical Letters, 2017, 28: 412.
    [47] Li C, Sui X L, Wang Z B, Wang Q, Gu D M. Chemical Engineering Journal, 2017, http://dx.doi.org/10.1016/j.cej.2017.05.154.
    [48] Su D W, Cortie M, Wang G X. Advanced Energy Materials, 2017, 1602014.
    [49] Zhang Z, Kong L L, Liu S, Li G R, Gao X P. Advanced Energy Materials, 2017, 7: 1602543.
    [50] Li Y J, Fan J M, Zheng M S, Dong Q F. Energy & Environmental Science, 2016, 9: 1998.
    [51] Yang R, Li L, Chen D, Chen L P, Ren B, Yan Y L, Xu Y H. Chemistryselect, 2017, 2: 11697.
    [52] Wang X W, Zhang Z A, Qu Y H, Lai Y Q, Li J. Journal of Power Sources, 2014, 256: 361.
    [53] Yan H, Cheng M, Zhong B, Chen Y X. Ionics, 2016, 22: 1999.
    [54] Yin L C, Liang J, Zhou G M, Li F, Saito R, Cheng H M. Nano Energy, 2016, 25: 203.
    [55] Singh G, Sutar D S, Divakar B V, Narayanam P K, Talwar S S, Srinivasa R S, Major S S. Nanotechnology, 2013, 24: 355704.
    [56] Yanilmaz A, Tomak A, Akbali B, Bacaksiz C, Ozceri E, Ari O, Senger R T, Selamet Y, Zareie H M. RSC Advances, 2017, 7: 28383.
    [57] 华文婷(Hua W T), 王鹏(Wang P), 孙雅馨(Sun Y X). 安徽工业大学学报(Journal of Anhui University of Technology), 2015, 32(4): 325.
    [58] Xie Y, Meng Z, Cai T W, Han W Q. ACS Applied Materials & Interfaces, 2015, 7: 25202.
    [59] 王璐(Wang L). 化学技术与开发(Technology & Development of Chemical Industry), 2016, 45(5): 10.
    [60] Denis P A, Huelmo C P, Iribarne F. Computational & Theoretical Chemistry, 2014, 1049: 13.
    [61] Zhou G M, Peak E, Hwang G S, Mathiram A. Nature Communication, 2015, 6: 7760.
    [62] Xu J, Su D W, Zhang W X, Bao W Z, Wang G X. Journal of Materials Chemistry A, 2016, 4: 17381.
    [63] Wang L, Yang Z, Nie H G, Gu C C, Hua W X, Xu X J, Chen X A, Chen Y, Huang S M. J. Mater. Chem. A, 2016, 4: 15343.
    [64] Yuan X Q, Liu B C, Hou H J, Zeinu K, He Y H, Yang X R, Xue W J, He X L, Huang L, Zhu X L, Wu L S, Hu J P, Yang J K, Xie J. RSC Advances, 2017, 7: 22567.
    [65] 高瑞玲(Gao G L), 缪灵(Miao L), 宋家琪(Song J Q), 吴忧(Wu Y). 全国功能材料科技与产业高层论坛(Functional Materials Technology and Industry Forum), 镇江(Zhenjiang), 2009.
    [66] Cai W L, Zhou J B, Li G R, Zhang K L, Liu X Y, Wang C, Zhou H, Zhu Y C, Qian Y T. ACS Appl. Mater. Interfaces, 2016, 8: 27679.
    [67] Li F, Zhao J J, Su Y. Physical Chemistry Chemical Physics, 2016, 18: 25241.
    [68] Liang C, Feng J R, Zhou H H, Fu C P, Wang G C, Yang L M, Xu C X, Chen Z X, Yang W J, Kuang Y F. J. Mater. Chem. A, 2017, 5: 7403.
    [69] Gu X X, Tong C J, Lai C, Qiu J X, Huang X X, Yang W L, Wen B, Liu L M, Hou Y L, Zhang S Q. Journal of Materials Chemistry A, 2015, 3: 16670.
    [70] Xiao Z, Yang Z, Zjang L, Pan H, Wang R H. ACS Nano, 2017, 11(8): 8488.
    [71] Liu Z, Li J, Xiang J, Cheng S, Wu H, Zhang N, Yuan L X, Zhang W F, Xie J, Huang Y H, Chang H X. Physical Chemistry Chemical Physics, 2017, 19: 2567.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700