用户名: 密码: 验证码:
含小净距隧道岩石边坡地震动力特性的大型振动台试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:LARGE-SCALE SHAKING TABLE TEST STUDY ON SEISMIC RESPONSE CHARACTERISTICS OF ROCK SLOPE WITH SMALL SPACING TUNNEL
  • 作者:江学良 ; 牛家永 ; 连鹏远 ; 文畅平 ; 王飞飞
  • 英文作者:JIANG Xue-liang;NIU Jia-yong;LIAN Peng-yuan;WEN Chang-ping;WANG Fei-fei;School of Civil Engineering and Mechanics,Central South University of Forestry and Technology;Institute of Geotechnical Engineering,Central South University of Forestry and Technology;
  • 关键词:地震工程 ; 含小净距隧道岩石边坡 ; 大型振动台模型试验 ; 加速度响应 ; 动位移响应
  • 英文关键词:earthquake engineering;;rock slope with small spacing tunnel;;large shaking table model test;;acceleration response;;dynamic displacement response
  • 中文刊名:GCLX
  • 英文刊名:Engineering Mechanics
  • 机构:中南林业科技大学土木工程与力学学院;中南林业科技大学岩土工程研究所;
  • 出版日期:2017-05-25
  • 出版单位:工程力学
  • 年:2017
  • 期:v.34
  • 基金:国家自然科学基金项目(51204125,51404309)
  • 语种:中文;
  • 页:GCLX201705015
  • 页数:11
  • CN:05
  • ISSN:11-2595/O3
  • 分类号:139-148+154
摘要
为研究含小净距隧道岩石边坡在地震作用下的动力特性,设计了一个比尺1∶10的含小净距隧道岩石边坡的大型振动台试验模型,试验以汶川波(WC)作为振动台激振波,采用水平(x)向、竖直(z)向和水平竖直(xz)向三种激振方式,研究地震作用下边坡的加速度响应特性和动位移响应特性。试验结果表明:1)边坡加速度放大系数沿坡面向上呈现出先减小后增大的非线性变化特征,边坡会改变输入地震波的频谱成分,对高频段地震波存在滤波作用。2)x、z单向激振下边坡加速度放大系数随着加载加速度峰值的增大而增大,xz双向激振下则随着加载加速度峰值的增大而减小。3)以3/5坡高为界,此高度以下,边坡对竖向地震波的放大作用大于对水平向地震波的放大作用,在此高度以上则刚好相反。4)边坡水平方向位移主要受水平向地震波的影响,且随着激振加速度峰值的增大而增大。5)以4/5坡高为界,此高度以下动位移峰值增大趋势缓慢,此高度以上,动位移响应峰值急剧增大,且在坡顶处产生最大的水平位移。6)边坡的动位移响应与地震波的激振方向和测点位置有关。试验研究结果对含小净距隧道边坡抗震设计及其地震动力反应特性的研究有一定的指导意义。
        In order to study the dynamic characteristics of rock slope with small spacing tunnel under seismic action, a large-scale shaking table slope model test was designed. The geometric scale was 1:10. In the model test, the Wenchuan(WC) seismic wave was used as the excitation wave to study the characteristics of acceleration response and displacement response of the rock slope model. The excitation directions included the horizontal direction(x), the vertical direction(z) and the horizontal and vertical direction(xz). The results show: 1) Upward along with the slope surface, the acceleration amplification coefficients show nonlinear variation which increases at first and then decreases. Slope changes the input seismic wave spectrum components and has filtered effect at high frequency; 2) In the x-or z-direction excitation, while the acceleration amplification coefficients increase with the increase of the peak loads. In the xz-direction excitation, the coefficients decrease with the increase of the peak loads; 3) 3/5 of slope height is the critical height. The vertical acceleration is amplified more obviously thanhorizontal acceleration while below the height; but above the height, the horizontal acceleration is amplified more obviously. 4) The horizontal displacement of the slope is mainly affected by the horizontal direction of the seismic wave, and the horizontal displacement increases with the increase of the peak loads. 5) 4/5 of slope height is the critical height, the dynamic displacement peak increases slowly while below the height, but the dynamic displacement peak increases rapidly when above the height and the maximum horizontal displacement is on the top of slope. 6) The dynamic displacement response is related to the excitation direction and location of transducers. These results improve the knowledge of the rock slope with small spacing tunnel under seismic action.
引文
[1]Lei M F,Peng L M,Shi C H.Model test to investigate the failure mechanisms and lining stress characteristics of shallow buried tunnels under unsymmetrical loading[J].Tunneling and Underground Space Technology,2015,46:64―75.
    [2]程嵩,张建民.面板堆石坝震动响应及变形规律的试验研究[J].工程力学,2012,29(8):80―86.Cheng Song,Zhang Jianmin.Centrifuge modeling test of dynamic response and deformation law of concrete-faced rockfill dam[J].Engineering Mechanics,2012,29(8):80―86.(in Chinese)
    [3]刘红帅,薄景山,刘德东.岩土边坡地震稳定性分析研究评述[J].地震工程与工程振动,2005,25(1):164―171.Liu Hongshuai,Bo Jingshan,Liu Dedong.Review on study of seismic stability analysis of rock-soil slopes[J].Earthquake Engineering and Engineering Vibration,2005,25(1):164―171.(in Chinese)
    [4]徐光兴,姚令侃,高召宁,等.边坡动力特性与动力响应的大型振动台模型试验研究[J].岩石力学与工程学报,2008,27(3):624―632.Xu Guangxing,Yao Lingkan,Gao Zhaoning,et al.Large-scale shaking table model test study on dynamic characteristics and dynamic responses of slope[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(3):624―632.(in Chinese)
    [5]董金玉,杨国香,伍法权,等.地震作用下顺层岩质边坡动力响应和破坏模式大型振动台试验研究[J].岩土力学,2011,32(10):2977―2982.Dong Jinyu,Yang Guoxiang,Wu Faquan,et al.The large-scale shaking table test study of dynamic response and failure mode of bedding rock slope under earthquake[J].Rock and Soil Mechanics,2011,32(10):2977―2982.(in Chinese)
    [6]叶海林,郑颖人,杜修力,等.边坡动力破坏特征的振动台模型试验与数值分析[J].土木工程学报,2012,45(9):128―135.Ye Hailin,Zheng Yingren,Du Xiuli,et al.Shaking table model test and numerical analysis on dynamic failure characteristics of slope[J].China Civil Engineering Journal,2012,45(9):128―135.(in Chinese)
    [7]李振生,巨能攀,候伟龙,等.陡倾层状岩质边坡动力响应大型振动台模型试验研究[J].工程地质学报,2012,20(2):242―248.Li Zhensheng,Ju Nengpan,Hou Weilong,et al.Large-scale shaking table model tests for dynamic response of steep stratified rock slopes[J].Journal of Engineering Geology,2012,20(2):242―248.(in Chinese)
    [8]杨国香,叶海林,伍法权,等.反倾层状结构岩质边坡动力响应特性及破坏机制振动台模型试验研究[J].岩石力学与工程学报,2012,31(11):2214―2221.Yang Guoxiang,Ye Hailin,Wu Faquan,et al.Shaking table model test on dynamic response characteristics and failure mechanism of antidip layered rock slope[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(11):2214―2221.(in Chinese)
    [9]刘婧雯,黄博,邓辉,等.地震作用下堆积体边坡振动台模型试验及抛出现象分析[J].岩土工程学报,2014,36(2):307―311.Liu Jingwen,Huang Bo,Deng Hui,et al.Shaking table tests and throwing phenomenon of deposit slopes under earthquakes[J].Chinese Journal of Geotechnical Engineering,2014,36(2):307―311.(in Chinese)
    [10]Seyyed M Hasheminejad,Kazemi Arad Siavash.Dynamic response of an eccentrically lined circular tunnel in poroelastic soil under seismic excitation[J].Soil Dynamics and Earthquake Engineering,2008,28(4):277―292.
    [11]董建华,朱彦鹏,马巍.框架预应力锚杆边坡支护结构动力计算方法研究[J].工程力学,2013,30(5):250―258.Dong Jianhua,Zhu Yanpeng,Ma Wei.Study on dynamic calculation method for frame supporting structure with pre-stress anchors[J].Engineering Mechanics,2013,30(5):250―258.(in Chinese)
    [12]邵帅,季顺迎.块石空间分布对土石混合体边坡稳定性的影响[J].工程力学,2014,31(2):177―183.Shao Shuai,Ji Shunying.Effects of rock spatial distributions on stability of rock-soil-mixture slope[J].Engineering Mechanics,2014,31(2):177―183.(in Chinese)
    [13]刘汉香,许强,王龙,等.地震波频率对岩质斜坡加速度动力响应规律的影响[J].岩石力学与工程学报,2014,33(1):125―133.Liu Hanxiang,Xu Qiang,Wang Long,et al.Effect of frequency of seismic wave on acceleration response of rock slopes[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(1):125―133.(in Chinese)
    [14]张国栋,刘学,金星,等.基于有限单元法的岩土边坡动力稳定分析及评价方法研究进展[J].工程力学,2008,25(增刊2):44―52.Zhang Guodong,Liu Xue,Jin Xing,et al.Research advances on the seismic stability analysis and evaluation of rock-soil slopes based on finite element method[J].Engineering Mechanics,2008,25(Suppl 2):44―52.(in Chinese)
    [15]Meymand P J.Shaking table scale model tests of nonlinear soil-pile-superstructure interaction in soft clay[D].Berkeley:University of California,1998.
    [16]Iai S.Similitude for shaking table tests on soil-structure-fluid model in 1-g gravitational field[J].Soils and Foundations,1989,29(1):105―118.
    [17]JTG D70-2004,公路隧道设计规范[S].北京:人民交通出版社,2004.JTG D70-2004,Code for design of road tunnel[S].Beijing:China Communications Press,2004.(in Chinese)
    [18]吕西林,陈跃庆,陈波,等.结构-地基动力相互作用体系振动台模型试验研究[J].地震工程与工程振动,2000,20(4):20―29.LüXilin,Chen Yueqing,Chen Bo,et al.Shaking table testing of dynamic soil-structure interaction system[J].Earthquake Engineering and Engineering Vibration,2000,20(4):20―29.(in Chinese)
    [19]GB50011-2010,建筑抗震设计规范[S].北京:中国建筑工业出版社,2011.GB50011-2010,Code for seismic design of buildings[S].Beijing:China Architecture and Building Press,2011.(in Chinese)
    [20]黄浩华.地震模拟振动台的设计与应用技术[M].北京:地震出版社,2008:315―340.Huang Haohua.The design and application technology on earthquake simulation vibrating table[M].Beijing:Earthquake Press,2008:315―340.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700