用户名: 密码: 验证码:
复阻抗检测技术研究现状分析及展望
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on research current status of complex impedance detection technology and prospect
  • 作者:徐铁 ; 涂亚庆 ; 牟泽龙 ; 陈鹏
  • 英文作者:XU Tie;TU Yaqing;MOU Zelong;CHEN Peng;Department of Military Logistics,Army Logistics University;
  • 关键词:复阻抗 ; 生物医学 ; 电化学 ; 微流控芯片 ; 检测技术
  • 英文关键词:complex impedance;;biomedical;;electrochemistry;;microfluidic chip;;detection technology
  • 中文刊名:CGQJ
  • 英文刊名:Transducer and Microsystem Technologies
  • 机构:陆军勤务学院军事物流系;
  • 出版日期:2019-06-10
  • 出版单位:传感器与微系统
  • 年:2019
  • 期:v.38;No.328
  • 基金:国家自然科学基金资助项目(61871402,61302175);; 重庆市自然科学基金重点资助项目(CSTC2015JCYJBX0017)
  • 语种:中文;
  • 页:CGQJ201906001
  • 页数:5
  • CN:06
  • ISSN:23-1537/TN
  • 分类号:7-10+14
摘要
归纳总结了国内外复阻抗检测技术研究与应用现状,重点对四臂电桥检测法、伏安法、矢量阻抗法、微波检测法和脉冲反射法等五类复阻抗检测方法进行探讨,分析比较了优缺点,重点列举复阻抗检测技术在生物医学与科学、材料与电化学、电气电力和微流控芯片等4个领域的应用。并根据研究现状探讨了两个存在的问题:高精度检测技术的成本很高、大多检测设备体型大且操作复杂。最后对复阻抗检测技术的3个发展趋势进行总结:新兴复阻抗检测技术呈现增长趋势,复阻抗检测技术及设备需求呈现操作更简便和成本更低趋势,应用领域多方向发展趋势。
        The research and application status of complex impedance detection technology at home and abroad are summarized. The five types of complex impedance detection methods such as four-arm bridge detection method,voltammetry method,vector impedance method,microwave detection method and pulse reflection method are dicussed,the advantages and disadvantages are analyzed and compared. The key applications of complex impedance detection technology in biomedicine and science,materials and electrochemistry,electrical power and microfluidic chips are listed,and the existing two problems according to the research status are discussed: the highprecision detection technology is costly,and most of the detection equipments are large in size and complicated in operation. Finally,the three development trends of complex impedance detection technology are summarized:emerging complex impedance detection technology shows a growing trend,complex impedance detection technology and equipment requirements show a simpler operation and lower cost trend,and the application field has a multidirectional development trend.
引文
[1] SUZDALENKO A,ZAKIS J. Single-loop current sensorless control for half-bridge based AC/DC converter[J]. IETE Technical Review,2016,33(6):662-673.
    [2] BARANWAL R,CASTELINO G F,IYER K,et al. A dual active bridge based single phase AC to DC power electronic transformer with advanced features[J]. IEEE Transactions on Power Electronics,2018,99:1.
    [3]严国胜.变电站直流系统的设计及故障分析[D].保定:华北电力大学,2014.
    [4]钱莹晶,张仁民.基于自由轴法的智能RLC测量仪研究[J].仪表技术与传感器,2015(8):36-40.
    [5]王达,王化祥,崔自强,等.一种集成式阻抗谱测量系统[J].传感器与微系统,2012,31(12):94-96.
    [6] KYLE U G,BOSAEUS I,DE LORENZO A D,et al. Bioelectrical impedance analysis-part II:Utilization in clinical practice[J].Clinical Nutrition,2004,23(6):1430-1453.
    [7] COX-REOVEN P L,VAN K B,SOETERS P B. Accuracy of bioelectrical impedance spectroscopy in measuring changes in body composition during severe weight loss[J]. Journal of Parenteral and Enteral Nutrition,2002,26(2):120-127.
    [8]章东兴,邹杰. Ni O敏感电极NH3传感器制备及其响应性能[J].传感器与微系统,2018,37(8):40-43.
    [9] KYLE U G,BOSAEUS I,DE LORENZO A D,et al. Bioelectrical impedance analysis-part I:Review of principles and methods[J].Clinical Nutrition,2004,23(5):1226.
    [10] MIN M,KINK A,LAND R,et al. Method and device for measurement of electrical bioimpedance:US,US 7706872 B2[P]. 2010.
    [11] SUN T,HOLMES D,GAWAD S,et al. High speed multi-frequency impedance analysis of single particles in a microfluidic cytometer using maximum length sequences[J]. Lab on A Chip,2007,7(8):1034-1040.
    [12] METHERALL P,BARBER D C,SMALLWOOD R H,et al.Three-dimensional electrical impedance tomography[J]. Nature,1996,380(6574):509.
    [13] MCEWAN A,TAPSON J,VAN S A,et al. Code-division-multiplexed electrical impedance tomography spectroscopy[J]. IEEE Transactions on Biomedical Circuits&Systems,2009,3(5):332.
    [14]杨宇祥,乔洋.一种多频率同步信号激励电流源设计[J].仪器仪表学报,2013,34(4):908-913.
    [15]邢兰昌,陈强,刘昌岭.基于电化学阻抗谱测试方法研究四氢呋喃水合物的生成和分解过程[J].岩矿测试,2015,34(6):704-711.
    [16] SANCHEZ B,BRAGOS R,VANDERSTEEN G. Influence of the multisine excitation amplitude design for biomedical applications using impedance spectroscopy[J]. Proc of IEEE Conf on Eng Med Biol Soc,2011(4):3975-3978.
    [17]徐阳阳.磁耦合谐振式无线电能传输的频率研究[D].重庆:重庆大学,2015.
    [18] KIM S,NOVOTNY D,GORDON J A,et al. A free-space measurement method for the low-loss dielectric characterization without prior need for sample thickness data[J]. IEEE Transactions on Antennas&Propagation,2016,64(9):3869-3879.
    [19] CHANG T,ZHANG X,YANG C,et al. Measurement of complex terahertz dielectric properties of polymers using an improved free-space technique[J]. Measurement Science and Technology,2017,28(4):045002.
    [20]刘陵玉,杨传法,张献生,等.太赫兹波段煤的湿度与介电特性关系[J].煤炭学报,2016,41(2):497-501.
    [21] KHARKOVSKY S N,ATIS C D. Nondestructive testing of mortar specimens using the microwave free-space method[J]. Journal of Materials in Civil Engineering,2018,15(2):200-204.
    [22]黄刚,黄文会,陈怀璧,等.同轴线法阻抗测量平台中高频接头的研制[J]. Chinese Physics C,2002,26(5):530-536.
    [23] SANDS M,REES J R. A bench measurement of the energy loss of a stored beam to a cavity[R]. Technical Report,2005.
    [24]张康,武彤,滕俊恒.开口同轴探头横电磁波模型法测量液体复介电常数[J].电子测量与仪器学报,2015,29(7):945-952.
    [25] NICOL C E,GUY M A. Time domain reflectometry:WO2001063219 A2[P]. 2001-10-01.
    [26] CRISTI F,FIERRO V,SUAREZ F,et al. A TDR-waveform approach to estimate soil water content in electrically conductive soils[J]. Computers&Electronics in Agriculture,2016,121:160-168.
    [27] BHUYAN H,SCHEUERMANN A,YAN G,et al. Application of spatial time domain reflectometry for investigating moisture content dynamic in unsaturated sand[C]∥International Conference on Electromagnetic Wave Interaction with Water and Moist Substances,2016.
    [28] BISQUERT J. Theory of the impedance of electron diffusion and recombination in a thin layer[J]. Journal of Physical Chemistry B,2016,106(2):325-333.
    [29] PARK K S,LEE D H,LEE J,et al. Comparison between two methods of bioelectrical impedance analysis for accuracy in measuring abdominal visceral fat area[J]. Journal of Diabetes&Its Complications,2016,30(2):343-349.
    [30] HURST P R,WALSH D C I,CONLON C A,et al. Validity and reliability of bioelectrical impedance analysis to estimate body fat percentage against air displacement plethysmography and dualenergy X-ray absorptiometry[J]. Nutrition&Dietetics,2016,73(2):197-204.
    [31] KEMMLER W,STENGEL S V,ENGELKE K,et al. Prevalence of sarcopenic obesity in Germany using established definitions[J].Osteoporosis International,2016,27(1):275-281.
    [32] BROWN B H. Electrical impedance tomography(EIT):A review[J]. Journal of Medical Engineering&Technology,2003,27(3):97-108.
    [33] BISQUERT J. Theory of the impedance of electron diffusion and recombination in a thin layer[J]. Journal of Physical Chemistry B,2016,106(2):325-333.
    [34] VALINCIUS G,MICKEVICIUS M,PENKAUSKAS T,et al.Electrochemical impedance spectroscopy of tethered bilayer membranes:An effect of heterogeneous distribution of defects in membranes[J]. Electrochimica Acta,2016,222(1):904-913.
    [35] TAMILSELVI S,MURUGARAJ R,RAJENDRAN N. Electrochemical impedance spectroscopic studies of titanium and its alloys in saline medium[J]. Materials&Corrosion,2015,58(2):113-120.
    [36]王红洲,郑金菊,郑建龙,等.基于铁基非晶薄带巨磁阻抗效应的位移传感器[J].传感器与微系统,2015,34(7):88-90.
    [37]吴杰,王志新.混合直流输电系统功率同步控制研究[J].电机与控制学报,2017,21(7):1-10.
    [38] HAPP H H. Power system control and stability[J]. Proceedings of the IEEE,2002,67(8):1177-1178.
    [39]唐宏伟.新型电气化铁路电能质量管理系统[J].电力系统保护与控制,2017,45(17):84-91.
    [40] AHN C H,CHOI J W,BEAUCAGE G,et al. Disposable smart lab on a chip for point-of-care clinical diagnostics[J]. Proceedings of the IEEE,2015,92(1):154-173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700