用户名: 密码: 验证码:
2×2中继混合射频/自由空间光航空通信系统性能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Performance Analysis of 2×2 Relay-Assisted Mixed Radio Frequency/ Free Space Optical Airborne Communication System
  • 作者:张韵 ; 王翔 ; 赵尚弘
  • 英文作者:Zhang Yun;Wang Xiang;Zhao Shanghong;Information and Navigation College, Air Force Engineering University;
  • 关键词:光通信 ; 混合射频/自由空间光 ; 2×2中继 ; exponentiated ; Weibull分布 ; Nakagami-m衰落链路 ; 平均误码率 ; 中断概率
  • 英文关键词:optical communications;;mixed radio frequency/free space optical;;2×2 relay;;exponentiated Weibull distribution;;Nakagami-m fading channel;;average bit-error-rate;;outage probability
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:空军工程大学信息与导航学院;
  • 出版日期:2019-03-10
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.444
  • 基金:国家自然科学基金(61571461)
  • 语种:中文;
  • 页:GXXB201903003
  • 页数:7
  • CN:03
  • ISSN:31-1252/O4
  • 分类号:30-36
摘要
基于解码转发中继方式,研究了2×2中继条件下混合射频/自由空间光(RF/FSO)航空通信系统的性能。建立了2×2中继混合RF/FSO通信系统模型,利用Meijer’s G函数推导出该系统信噪比的概率分布函数及累积分布函数,并推导了该系统平均误码率(BER)和中断概率的闭合表达式。仿真分析了大气湍流强度、孔径尺寸和调制方式对平均BER和中断概率的影响。结果表明,孔径平均效应可有效改善混合RF/FSO航空通信系统的性能,2×2中继通信系统性能明显优于1×1中继通信系统。
        The performance of mixed radio frequency(RF)/free space optical(FSO) airborne communication system based on decoding and 2×2 relaying is analyzed. The model of 2×2 relay-assisted mixed RF/FSO airborne communication system is established, and the probability distribution function and cumulative distribution function about signal-to-noise ratio of this system are derived by Meijer's G function. Moreover, the closed expressions of average bit-error-rate(BER) and outage probability of the system are obtained. The effects of atmosphere turbulence intensity, aperture size and modulation mode on the average BER and outage probability are analyzed by the simulation. The results show that the aperture averaging effect can effectively improve the performance of mixed RF/FSO airborne communication system, and the performance of the 2×2 relay-assisted communication system is significantly better than that of the 1×1 relay-assisted communication system.
引文
[1] Hulea M, Ghassemlooy Z, Rajbhandari S, et al. Compensating for optical beam scattering and wandering in FSO communications[J]. Journal of Lightwave Technology, 2014, 32(7): 1323-1328.
    [2] Li F, Hou Z H, Wu Y. Experiment and numerical evaluation of bit error rate for free-space communication in turbulent atmosphere[J]. Optics & Laser Technology, 2013, 45: 104-109.
    [3] Zhu X M, Kahn J M. Free-space optical communication through atmospheric turbulence channels[J]. IEEE Transactions on Communications, 2002, 50(8): 1293-1300.
    [4] Stotts L B, Stadler B, Graves B, et al. Optical RF communications adjunct[J]. Proceedings of SPIE, 2008, 7091: 709102.
    [5] Soleimani-Nasab E, Uysal M. Generalized performance analysis of mixed RF/FSO cooperative systems[J]. IEEE Transactions on Wireless Communications, 2016, 15(1): 714-727.
    [6] Zhao J, Zhao S H, Zhao W H, et al. Performance analysis for mixed FSO/RF Nakagami-m and exponentiated Weibull dual-hop airborne systems[J]. Optics Communications, 2017, 392: 294-299.
    [7] Anees S, Bhatnagar M R. Performance evaluation of decode-and-forward dual-hop asymmetric radio frequency-free space optical communication system[J]. IET Optoelectronics, 2015, 9(5): 232-240.
    [8] Sharma N, Garg P, Bansal A. Decode-and-forward relaying in mixed η-μ and Gamma-Gamma dual hop transmission system[J]. IET Communications, 2016, 10(14): 1769-1776.
    [9] Tsiftsis T A. Performance of heterodyne wireless optical communication systems over Gamma-Gamma atmospheric turbulence channels[J]. Electronics Letters, 2008, 44(5): 372-373.
    [10] Zvanovec S, Perez J, Ghassemlooy Z, et al. Route diversity analyses for free-space optical wireless links within turbulent scenarios[J]. Optics Express, 2013, 21(6): 7641-7650.
    [11] Barrios R, Dios F. Exponentiated Weibull distribution family under aperture averaging for Gaussian beam waves[J]. Optics Express, 2012, 20(12): 13055-13064.
    [12] Barrios R, Dios F. Exponentiated Weibull model for the irradiance probability density function of a laser beam propagating through atmospheric turbulence[J]. Optics & Laser Technology, 2013, 45: 13-20.
    [13] Zhao J, Zhao S H, Zhao W H, et al. Performance analysis for mixed RF/FSO airborne communication systems over atmospheric turbulence and pointing error[J]. Chinese Journal of Lasers, 2017, 44(9): 0906001. 赵静, 赵尚弘, 赵卫虎, 等. 大气湍流和指向误差下混合RF/FSO航空通信系统性能分析[J]. 中国激光, 2017, 44(9): 0906001.
    [14] Gradshteyn I S, Ryzhik I M. Table of integrals, series, and products[J]. Mathematics of Computation, 1966, 20(96): 616.
    [15] Wang T R, Cano A, Giannakis G B, et al. High-performance cooperative demodulation with decode-and-forward relays[J]. IEEE Transactions on Communications, 2007, 55(7): 1427-1438.
    [16] Berman S M. Sign-invariant random variables and stochastic processes with sign-invariant increments[J]. Transactions of the American Mathematical Society, 1965, 119(2): 216-243.
    [17] Popoola W O, Ghassemlooy Z. BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence[J]. Journal of Lightwave Technology, 2009, 27(8): 967-973.
    [18] Luke Y L. The special functions and their approximations[M]. Cambridge: Academic Press, 1969: 438-464.
    [19] Prudnikov A P, Brychkov Y A, Marichev O I, et al. Integrals and series[J]. American Journal of Physics, 1988, 56(10): 957-958.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700