用户名: 密码: 验证码:
藻-菌耦合系统对猪场沼液的净化效果及其影响条件研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Nutrient removal from piggery digestate using a microalgae-bacteria system and its influencing conditions
  • 作者:罗龙皂 ; 曾凡健 ; 田光明
  • 英文作者:LUO Long-zao;ZENG Fan-jian;TIAN Guang-ming;School of Chemistry and Environmental Science, Shangrao Normal University;College of Environmental and Resources Sciences, Zhejiang University;
  • 关键词:藻-菌系统 ; 猪场沼液 ; 光合产氧 ; 氮磷 ; 有机物
  • 英文关键词:microalgae-bacteria system;;piggery digestate;;photosynthetic oxygen production;;nitrogen and phosphorus;;organic pollutant
  • 中文刊名:NHBH
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:上饶师范学院化学与环境科学学院;浙江大学环境与资源学院;
  • 出版日期:2019-01-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:v.38;No.281
  • 基金:水体污染控制与治理科技重大专项(2014ZX07101-012)~~
  • 语种:中文;
  • 页:NHBH201901028
  • 页数:9
  • CN:01
  • ISSN:12-1347/S
  • 分类号:217-225
摘要
针对猪场沼液中氮磷含量高且碳氮比严重失调不利于生化处理这一问题,选用对养猪废水净化效果好的近具刺链带藻和有机物降解效率高的商业化菌剂构建藻-菌系统,探讨其对猪场沼液的净化效果及其运行条件。结果表明,添加有机物降解菌不仅有助于促进微藻的生长,使微藻生物量最大值达到1.47 g·L-1,较未添加菌剂处理提高了23.53%,还能促进废水中碳氮磷的去除效果,其中总有机碳、氨氮和总磷的去除率分别提高了13.40%、3.39%和5.90%。藻-菌系统在不同温度条件下对猪场沼液中碳氮磷的净化效果差异明显。温度为30℃时最利于藻菌系统中微藻的生长,且对总有机碳和总磷的去除效果最好,此时微藻生物量最高值能达到2.21 g·L-1,总有机碳和总磷去除率为72.64%和26.66%;而最利于氨氮去除的温度为40℃,这与高温条件下氨氮易挥发有关。不同光照强度下藻-菌系统对污染物净化能力也不同。随着光照强度的增加,系统中微藻生长速度和光合产氧能力逐渐增加,系统对碳氮磷的去除效果也增强,而当光照强度从400μmol photons·m-2·s-1增加到600μmol photons·m-2·s-1时系统中微藻的生长速度和污染物的去除效果并没有提高,可见将光照强度控制在400μmol photons·m-2·s-1时系统中微藻生物量、总有机碳、氨氮和总磷去除率最高,分别为2.35 g·L-1、57.03%、68.01%和59.66%。研究表明,添加有机物降解菌可以促进微藻的生长,从而促进其对猪场沼液的净化效果,该藻菌系统运行的适宜温度和光照条件分别为30℃和400μmol photons·m-2·s-1。
        Owing to the high concentrations of nitrogen and phosphorus and the imbalance in the C/N ratio in piggery digestate, it is difficult to treat this wastewater based on traditional biochemical processes. Desmodesmus sp. CHX1 and agent bacteria with high-efficiency organic pollutant removal were used in this study to develop a microalgae-bacteria system that effectively treats piggery digestate. The aim was to investigate the effects of temperature and light on the purification of piggery digestate in the microalgae-bacteria system. The results showed that the addition of organic pollutant degradation bacteria not only improved the growth of Desmodesmus sp. CHXl(the biomass increased by23.53%), but also increased TOC(total organic carbon), NH4-N(ammonium nitrogen), and TP(total phosphorus)removals by 13.40%,3.39%, and 5.90%, respectively, during piggery digestate treatment. Temperature was an important factor in nutrient(TOC, NH+4-N, and TP)removal. A temperature of 30 ℃ was the best condition for the highest microalgae growth rate and TOC and TP removal rates. The biomass of microalgae reached 2.21 g·L-1, and the removal efficiencies of TOC and TP were 72.64% and 26.66%, respectively. The best condition for NH+4-N removal was 40 ℃, which possibly enhanced NH+4-N volatilization. Light radiation intensity was another key factor for purifying wastewater using the microalgae-bacteria system. By increasing the light intensity, the microalgae growth rate and photosynthetic oxygen production obviously increased, and the TOC, NH+4-N, and TP removal efficiencies improved significantly. However, the growth rate and removal efficiency did not increase when the light intensity ranged from 400 μmol·m-2·s-1to 600 μmol·m-2·s-1. The highest microalgal biomass and pollutant removal were observed under 400 μmol·m-2·s-1light intensity, leading to the highest microalgae biomass of 2.35 g·L-1and the highest removal efficiencies of 57.03%, 68.01%, and 59.66% removal for TOC, NH+4-N, and TP, respectively.
引文
[1] Park J, Jin H F, Lim R, et al. Ammonia removal from anaerobic diges-tion effluent of livestock waste using green alga Scenedesmus sp.[J].Bioresource Technology, 2010, 101(22):8649-8657.
    [2] Uludag-demirer S, Demirer G N, Frear C, et al. Anaerobic digestion ofdairy manure with enhanced ammonia removal[J]. Journal of Environmental Management, 2008, 86(1):193-200.
    [3] Tricase C, Lombardi M. State of the art and prospects of Italian biogasproduction from animal sewage:Technical-economic considerations[J].Renewable Energy, 2009, 34(3):477-485.
    [4]武立叶,郑佩佩,赵吉祥,等.沼液灌溉对大白菜产量、品质及土壤养分含量的影响[J].中国沼气, 2014, 32(3):90-93.WU Li-ye, ZHENG Pei-pei, ZHAO Ji-xiang, et al. The effect of biogasslurry irrigation on Chinese cabbage Beassica pekinensis L. and the soilquality[J]. China Biogas, 2014, 32(3):90-93.
    [5]刘国,胡凤妹,汤景鹏,等.不同基质的人工湿地去除猪场沼液中磷的性能[J].环境工程, 2014, 32(10):55-60.LIU Guo, HU Feng-mei, TANG Jing-peng, et al. Removal of phospho-us from biogas slurry of pig farm by artificial wetlands filled different materials[J]. Water Pollution Control, 2014, 32(10):55-60.
    [6]王振,张彬彬,向衡,等.垂直潜流人工湿地堵塞及其运行效果影响研究[J].中国环境科学, 2015, 35(8):2494-2502.WANG Zhen, ZHANG Bin-bin, XIANG Heng, et al. Clogging of verti-cal subsurface flow constructed wetland and its effects on purifying effi-ciency[J]. China Environmental Science, 2015, 35(8):2494-2502.
    [7]隋倩雯.氨吹脱与膜生物反应器组合工艺处理猪场厌氧消化液研究[D].北京:中国农业科学院, 2014.SUI Qian-wen. Combined of ammonia stripping and membrane bioreac-tor processes for anaerobically digested swine wastewater treatment[D].Beijing:Chinese Academy of Agricultural Sciences, 2014.
    [8] Garcia M C, Szogi A A, Vanotti M B, et al. Enhanced solid-liquid sepa-ration of dairy manure with natural flocculants[J]. Bioresource Technology, 2009, 100(22):5417-5423.
    [9] Wang J H, Zhang T Y, Dao G H, et al. Microalgae-based advanced mu-nicipal wastewater treatment for reuse in water bodies[J]. Applied Microbiology&Biotechnology, 2017, 101(7):1-17.
    [10] Riedel T E, Berelson W M, Nealson K H, et al. Oxygen consumptionrates of bacteria under nutrient-limited conditions[J]. Applied&Environmental Microbiology, 2013, 79(16):4921-4931.
    [11] Guo Z, Tong Y W. The interactions between Chlorella vulgaris and al-gal symbiotic bacteria under photoautotrophic and photoheterotrophicconditions[J]. Journal of Applied Phycology, 2014, 26(3):1483-1492.
    [12] Ramanan R, Kim B H, Cho D H, et al. Algae-bacteria interactions:Evolution, ecology and emerging applications[J]. Biotechnology Advances, 2016, 34(1):14-29.
    [13] Subashchandrabose S R, Ramakrishnan B, Megharaj M, et al. Consor-tia of Cyanobacteria/microalgae and bacteria:Biotechnological poten-tial[J]. Biotechnology Advances, 2011, 29(6):896.
    [14] Risgaardpetersen N, Nicolaisen M H, Revsbech N P, et al. Competi-tion between ammonia-oxidizing bacteria and benthic microalgae[J].Applied&Environmental Microbiology, 2004, 70(9):5528-5537.
    [15] Cheng H X, Tian G M. Identification of a newly isolated microalgafrom a local pond and evaluation of its growth and nutrients removalpotential in swine breeding effluent[J]. Desalination&Water Treatment, 2013, 51(13/14/15):2768-2775.
    [16] Watanabe K, Takihana N, Aoyagi H, et al. Symbiotic association in Chlorella culture[J]. Fems Microbiology Ecology, 2005, 51(2):187-196.
    [17] Jung S W, Kim B H, Katano T, et al. Pseudomonas fluorescens HYK0210-SK09 offers species-specific biological control of winteralgal blooms caused by freshwater diatom Stephanodiscus hantzschii[J]. Journal of Applied Microbiology, 2008, 105(1):186-195.
    [18] de-bashan L E, Bashan Y, Moreno M, et al. Increased pigment andlipid content, lipid variety, and cell and population size of the microal-gae Chlorella spp. when co-immobilized in alginate beads with the mi-croalgae-growth-promoting bacterium Azospirillum brasilense[J]. Canadian Journal of Microbiology, 2002, 48(6):514-521.
    [19] Mouget J, Dakhama A, Lavoie M C, et al. Algal growth enhancementby bacteria:Is consumption of photosynthetic oxygen involved?[J].FEMS Microbiology Ecology, 1995, 18(1):35-43.
    [20] Posadas E, Garcíaencina P A, Soltau A, et al. Carbon and nutrient re-moval from centrates and domestic wastewater using algal-bacterialbiofilm bioreactors[J]. Bioresource Technology, 2013, 139(13):50.
    [21] Demmig-Adams B, Adams W W. The role of xanthophyll cycle carot-enoids in the protection of photosynthesis[J]. Trends in Plant Science,1996, 1(1):21-26.
    [22] Markou G, Vandamme D, Muylaert K. Ammonia inhibition on Arthrospira platensis in relation to the initial biomass density and pH[J]. Bioresource Technology, 2014, 166(14):4900-4916.
    [23] González-Fernández C, Molinuevo-Salces B, García-González M C.Nitrogen transformations under different conditions in open ponds bymeans of microalgae-bacteria consortium treating pig slurry[J]. Bioresource Technology, 2011, 102(2):960-966.
    [24] Karya N G A I, Van Der Steen N P, Lens P N L. Photo-oxygenation tosupport nitrification in an algal-bacterial consortium treating artificialwastewater[J]. Bioresource Technology, 2013, 134(2):244-250.
    [25] Su Y, Mennerich A, Urban B. Municipal wastewater treatment and bio-mass accumulation with a wastewater-born and settleable algal-bacte-rial culture[J]. Water Research, 2011, 45(11):3351-3358.
    [26] Larsdotter K, Ji J, Dalhammar G. Phosphorus removal from wastewaterby microalgae in Sweden-a year-round perspective[J]. Environmental Technology, 2010, 31(2):117-123.
    [27] Luo L, Shao Y, Luo S, et al. Nutrient removal from piggery wastewaterby Desmodesmus sp. CHX1 and its cultivation conditions optimization[J]. Environmental Technology, 2018:1-8.
    [28] Renaud S M, Thinh L V, Lambrinidis G, et al. Effect of temperatureon growth, chemical composition and fatty acid composition of tropicalAustralian microalgae grown in batch cultures[J]. Aquaculture, 2002,211(1):195-214.
    [29] Schnurr P J, Espie G S, Allen D G. Algae biofilm growth and the po-tential to stimulate lipid accumulation through nutrient starvation[J].Bioresource Technology, 2013, 136C(5):337-344.
    [30] Azov Y, Goldman J C. Free ammonia inhibition of algal photosynthesisin intensive cultures[J]. Applied&Environmental Microbiology, 1982,43(4):735-739.
    [31] Pérez N M, Ames W M, Nilsson H, et al. Ammonia binding to the oxy-gen-evolving complex of photosystem II identifies the solvent-ex-changeable oxygen bridge(μ-oxo)of the manganese tetramer[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(39):15561-15566.
    [32] Hansen K H, Angelidaki I, Ahring B K. Anaerobic digestion of swinemanure:Inhibition by ammonia[J]. Water Research, 1998, 32(1):5-12.
    [33] Martinez M E, Sánchez S, Jiménez J M, et al. Nitrogen and phosphorusremoval from urban wastewater by the microalga Scenedesmus obliquus[J]. Bioresource Technology, 2000, 73(3):263-272.
    [34] Mujtaba G, LEE K. Treatment of real wastewater using co-culture ofimmobilized Chlorella vulgaris and suspended activated sludge[J]. Water Research, 2017, 120:174-184.
    [35] Rebolloso Fuentes M M, Garcia Sánchez J L, Fernández Sevilla J M,et al. Outdoor continuous culture of Porphyridium cruentum in a tubu-lar photobioreactor:Quantitative analysis of the daily cyclic variationof culture parameters[C]//Osinga R, Tramper J, Burgess J G, et al.Progress in industrial microbiology, Amsterdam:Elsevier, 1999:271-288.
    [36]席婷婷.城市污水培养藻类系统中影响藻类供氧效能的因素研究[D].哈尔滨:哈尔滨工业大学, 2012.XI Ting-ting. Factors influencing oxygen supply efficiency of algae onsystem of algae culture from municipal wastewater[D]. Harbin:HarbinInstitute of Technology, 2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700