用户名: 密码: 验证码:
水氮调控对葡萄园土壤温室气体排放及其增温潜势的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Water and Nitrogen Regulation on Greenhouse Gas Emissions and Warming Potential in Vineyard Soil
  • 作者:刘巧 ; 吉艳芝 ; 郭艳杰 ; 张丽娟 ; 张杰 ; 韩建
  • 英文作者:LIU Qiao;JI YanZhi;GUO YanJie;ZHANG LiJuan;ZHANG Jie;HAN Jian;College of Resources & Environmental Sciences, Agricultural University of Hebei/Key Laboratory for Farmland Eco-Environment of Hebei Province;
  • 关键词:葡萄园 ; 水氮调控 ; 温室气体 ; 全球增温潜势
  • 英文关键词:vineyard;;water and nitrogen regulation;;greenhouse gases;;global warming potential
  • 中文刊名:ZNYK
  • 英文刊名:Scientia Agricultura Sinica
  • 机构:河北农业大学资源与环境科学学院/河北省农田生态环境重点实验室;
  • 出版日期:2019-04-16
  • 出版单位:中国农业科学
  • 年:2019
  • 期:v.52
  • 基金:国家重点研发计划课题(2017YFD0200106)
  • 语种:中文;
  • 页:ZNYK201908011
  • 页数:12
  • CN:08
  • ISSN:11-1328/S
  • 分类号:124-135
摘要
【目的】探究不同水氮调控下鲜食葡萄园土壤N_2O、CO_2和CH_4 3种温室气体的排放特征及其增温潜势,以期了解水氮调控对温室气体排放的贡献,旨在筛选出更为合理的水氮调控管理模式,从而为减缓葡萄园温室气体排放,促进葡萄产业可持续生产提供科学依据和技术参考。【方法】于2017年4—12月,选择在河北省葡萄主产区—昌黎,以鲜食葡萄‘红地球’为供试葡萄品种,通过田间小区设置传统水氮、移动水肥、优化水氮和优化水氮+DMPP(3,4-二甲基吡唑磷酸盐,一种新型的硝化抑制剂) 4个处理,采用密闭静态箱-气相色谱法对鲜食葡萄园土壤3种温室气体(N_2O、CO_2和CH_4)排放量进行监测,比较其综合增温潜势差异,并测定葡萄产量。【结果】N_2O排放通量施肥后呈现单峰趋势,在施肥灌水后的1—2 d出现峰值。氮肥能显著提高土壤N_2O排放通量,与传统水氮相比,减氮控水处理能降低73.03%—88.19%的N_2O平均排放通量,达到显著性差异(P<0.05)。等氮条件下配施DMPP能平均降低50.08%的N_2O排放通量;各处理CO_2排放通量变化趋势一致,在施肥后2—3 d达到排放高峰,在生长期内表现为季节变化规律。减氮控水处理能减少60.56%—62.13%的CO_2排放,达到减排效果;CH_4排放通量则无明显变化趋势,施肥后CH_4排放通量时正时负,其中传统水氮CH_4排放通量波动性较大,范围在-0.132—0.238μg·m~(-2)·h~(-1),减氮控水处理之间变化趋势平缓,无显著性差异(P>0.05)。在整个试验期间,各处理土壤N_2O排放总量从高到低依次是传统水氮、优化水氮、移动水肥和优化水氮+DMPP,分别为3.90、2.83、2.76和2.65 kg·hm~(-2),排放系数介于0.58%—0.67%。与传统水氮处理相比,减氮控水处理(移动水肥、优化水氮和优化水氮+DMPP)可使N_2O总排放累积量降低27.56%—32.09%;各处理土壤CO_2和CH_4的累积排放量,分别为传统水氮(3 816.05 kg·hm~(-2)、0.060 g·hm~(-2)),移动水肥(3 387.33 kg·hm~(-2)、-0.075 g·hm~(-2)),优化水氮(3 410.95 kg·hm~(-2)、-0.036 g·hm~(-2))和优化水氮+DMPP(3 412.06 kg·hm~(-2)、-0.030 g·hm~(-2))。减氮控水处理可分别使CO_2排放累积量降低10.59%—11.23%,CH_4总排放累积量降低150.23%—224.38%。结合葡萄产量,减氮控水处理葡萄产量较传统水氮处理增加8.81%—19.35%,其中以优化+DMPP处理增幅最大,且比优化水氮和移动水肥处理也高出9.69%和2.25%。【结论】与传统水氮相比,优化水氮+DMPP处理土壤N_2O、CO_2和CH_4累积排放量分别降低了32.09%、10.59%和150.23%,总GWP降低了12.82%,实现了葡萄园温室气体减排,同时可使葡萄产量增加19.35%,达到了经济与环境双赢,综合评价为本研究中最佳水氮调控措施。
        【Objective】The objective of this paper was to explore the emission characteristics and warming potential of the greenhouse gases N_2O, CO_2 and CH_4 from table grape vineyard soils under different water and nitrogen regulation, and to understand the contribution of water and nitrogen regulation to greenhouse gas emissions, thus screening out a more reasonable management model of water and nitrogen regulation, so as to provide scientific basis and technical reference for reducing greenhouse gas emissions from vineyards and promoting grape industry sustainable production. 【Method】From April 2017 to December 2017,Changli, the main grape producing area in Hebei Province, was selected as the experimental site and the table grape "Red globe" was used as the tested grape variety. A field microplot experiment was employed with four treatments, including traditional water and nitrogen, mobile water and fertilizer, optimized water and nitrogen, as well as optimized water and nitrogen + DMPP. The greenhouse gas emissions(N_2O, CO_2 and CH_4) from the vineyard soil were monitored by using closed static chamber-gas chromatography, and then their comprehensive warming potential differences were compared. Final, the grape yields were measured.【Result】N_2O emission flux showed a single peak trend after fertilization, and the peak appeared on the 1-2 day after fertilization.Nitrogen fertilizer could significantly increase soil N_2O emission flux. Compared with the traditional water and nitrogen treatment,nitrogen reduction and water control treatments could reduce the average N_2O emission flux by 73.03%-88.19%, and their difference was significant(P<0.05). Optimized water and nitrogen + DMPP treatment could reduce the N_2O emission flux by 50.08% on average under the condition of equal nitrogen, and the trend of CO_2 emission flux was the same in all treatments, reaching the peak2-3 days after fertilization, showing seasonal variation in the growth period. Nitrogen reduction and water control treatments could reduce CO_2 emissions by 60.56%-62.13%. CH_4 emission flux had no obvious change trend, but CH_4 emission flux was positive or negative after fertilization. The traditional CH_4 emission flux fluctuated greatly, ranging from-0.132 to 0.238 μg·m~(-2)·h~(-1). There was no significant difference between nitrogen reduction and water control treatments(P>0.05). During the whole experiment period, the total N_2O emissions of the treatments were in the order of traditional water and nitrogen, optimized water and nitrogen, mobile water and fertilizer and optimized water and nitrogen+DMPP, which were 3.90, 2.83, 2.76 and 2.65 kg·hm~(-2) with the emission coefficients were 0.58%-0.67%, respectively. Comparing with traditional water and nitrogen treatment, the nitrogen reduction and water control treatments(mobile water and fertilizer, optimized water and nitrogen and optimized water and nitrogen+DMPP) could reduce the total N_2O emissions by 27.56%-32.09%. The cumulative emissions of CO_2 and CH_4 were 3 816.05 kg·hm~(-2) and 0.060 g·hm~(-2) in traditional water and nitrogen treatment, 3 387.33 kg·hm~(-2) and-0.075 g·hm~(-2) in mobile water and fertilizer treatment, 3 410.95 kg·hm~(-2) and-0.036 g·hm~(-2) in optimized water and nitrogen treatment, and 3 412.06 kg·hm~(-2) and-0.030 g·hm~(-2) in optimized water and nitrogen+DMPP treatment, respectively. Nitrogen reduction and water treatments could reduce the total cumulative CO_2 emissions by10.59%-11.23% and CH_4 emissions by 150.23%-224.38%, respectively. Combining with the grape yield, the grape yield in nitrogen reduction and water control treatments was increased by 8.81% to 19.35% compared with traditional water-nitrogen treatment, and the largest increase was found under the optimized water and nitrogen + DMPP treatment, which was 9.69% and 2.25% higher than that under optimized water and nitrogen and mobile water and fertilizer treatment.【Conclusion】 Compared with the traditional water and nitrogen treatment, the cumulative emission of N_2O, CO_2 and CH_4 in soils treated with optimized water and nitrogen + DMPP was decreased by 32.09%, 10.59% and 150.23%, respectively, and the total GWP was decreased by 12.82%, achieving greenhouse gas emission reduction in vineyards; at the same time, it could increase the grape yield by 19.35%, achieving a win-win situation for both economy and environment, which was evaluated as the best water and fertilizer regulation measures in this study.
引文
[1]黄耀.中国的温室气体排放、减排措施与对策.第四纪研究,2006,26(5):722-732.HUANG Y.Emissions of greenhouse gases in China and its reduction strategy.Quaternary Sciences,2006,26(5):722-732.(in Chinese)
    [2]World Meteorological Organization.The state of greenhouse gases in the atmosphere based on global observations through 2013.WMOGreenhouse Gas Bulletin,2013,9:1-4
    [3]METZ B,DAVIDSON O,CONINCK H,LOOS M,MEYER L.IPCCspecial report on carbon dioxide capture and storage.Intergovernmental Panel on Climate change,Geneva(Switzerland).Working GroupⅢ,2005.
    [4]MELILLO J M,STEUDLER P A,ABER J D,NEWKIRK K,LUX H,BOWLES F P,CATRICALA C,MAGILL A,AHRENS T,MORRISSEAU S.Soil warming and carbon-cycle feedbacks to the climate system.Science,2002,298(5601):2173-2176.
    [5]王义祥,叶菁,王成己,翁伯琦,黄毅斌.不同经营年限对柑橘果园土壤有机碳及其组分的影响.生态环境学报,2014,23(10):1574-1580.WANG Y X,YE J,WANG C J,WENG B Q,HUANG Y B.Effect of different cultivation years on soil organic carbon pools in citrus orchards.Ecology and Environmental Sciences,2014,23(10):574-1580.(in Chinese)
    [6]田野,陈冠铭,李家芬,向雄鹰,刘扬,李宏杨.世界葡萄产业发展现状.热带农业科学,2018,38(6):96-101,105.TIAN Y,CHEN G M,LI J F,XIANG X Y,LIU Y,LI H Y.Present development of grape industry in the world.Chinese Journal of Tropical Agriculture,2018,38(6):96-101,105.(in Chinese)
    [7]亓桂梅,李旋,赵艳侠,董兴全.2017年世界葡萄干生产及流通概况.中外葡萄与葡萄酒,2018(2):60-65.QI G M,LI X,ZHAO Y X,DONG X Q.Production and circulation of world raisins in 2017.Sino-Overseas Grapevine&Wine,2018(2):60-65.(in Chinese)
    [8]ZHANG Y J,NIU H S.Influences of two irrigation systems on soil N2O emissions from vineyards in Ningxia,China.Journal of University of Chinese Academy of Sciences,2016,33(2):178-186.
    [9]张亚捷,牛海山,汪诗平,Andreas Wilkes,徐坤,吴旭东.不同灌溉方法对宁夏葡萄园土壤二氧化碳和甲烷排放的影响.灌溉排水学报,2016,35(1):17-21.ZHANG Y J,NIU H S,WANG S P,Andreas Wilkes,XU K,WU X D.Effect of different irrigation methods on carbon dioxide and methane emissions in Ningxia vineyards.Journal of Irrigation and Drainage,2016,35(1):17-21.(in Chinese)
    [10]李银坤,武雪萍,郭文忠,薛绪掌.不同氮水平下黄瓜-番茄日光温室栽培土壤N2O排放特征.农业工程学报,2014,30(23):260-267.LI Y K,WU X P,GUO W Z,XU X Z.Characteristics of greenhouse soil N2O emissions in cucumber-tomato system under different nitrogen conditions.Transactions of the Chinese Society of Agricultural Engineering,2014,30(23):260-267.(in Chinese)
    [11]马艳芹,钱晨晨,孙丹平,邓丽萍,黄国勤,陆卫斌.施氮水平对稻田土壤温室气体排放的影响.农业工程学报,2016,32(S2):128-134.MA Y Q,QIAN C C,SUN D P,DDENG L P,HUANG G Q,LU W B.Effect of nitrogen fertilizer application on greenhouse gas emissions from soil in paddy field.Transactions of the Chinese Society of Agricultural Engineering,2016,32(Suppl.2):128-134.(in Chinese)
    [12]孙卓玲.河北葡萄主产区水肥一体化技术研究[D].保定:河北农业大学,2014.SUN Z L.Fertigation research of the main grape planting areas in Hebei Province[D].Baoding:Agricultural University of Hebei,2014.(in Chinese)
    [13]WEISKE A,BENCKISER G,HERBERT T,JCG O.Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate(DMPP)in comparison to dicyandiamide(DCD)on nitrous oxide emissions,carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments.Biology&Fertility of Soils,2001,34(2):109-117.
    [14]PEREIRA J,FANGUEIRO D,CHADWICK D R.Effect of cattle slurry pre-treatment by separation and addition of nitrification inhibitors on gaseous emissions and N dynamics:a laboratory study.Chemosphere,2010,79(6):620-627.
    [15]HATCH D,TRINDADE H,CARDENAS L,CARNEIRO J,HAWKINS J,SCHOLEFIELD D,CHADWICK D.Laboratory study of the effects of two nitrification inhibitors on greenhouse gas emissions from a slurry-treated arable soil:impact of diurnal temperature cycle.Biology and Fertility of Soils,2005,41(4):225-232.
    [16]卢树昌,陈清,张福锁,贾文竹.河北省果园氮素投入特点及其土壤氮素负荷分析.植物营养与肥料学报,2008(5):858-865.LU S C,CHEN Q,ZHANG F S,JIA W Z.Analysis of nitrogen input and soil nitrogen load in orchards of Hebei province.Journal of Plant Nutrition and Fertilizers,2008(5):858-865.(in Chinese)
    [17]刘影,唐莉,王毅,周洪富,周晏起.果园主要灌溉方式及其节水节肥效果.北方果树,2016(4):1-3.(in Chinese)LIU Y,TANG L,WANG Y,ZHOU H F,ZHOU Y Q.Different irrigation methods of orchards and water saving performance.Northern Fruits,2016(4):1-3.(in Chinese)
    [18]李志安,邹碧,曹裕松,刘剑,温达志.地面氧化亚氮排放静态箱测定技术.土壤与环境,2002(4):413-416.LI Z A,ZOU B,CAO Y S,LIU J,WEN D Z.Technique of static chamber in determining nitrous oxide emission from land surface.Ecology and Environmental Sciences,2002(4):413-416.(in Chinese)
    [19]IPCC.Climate Change 2013:The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge:Cambridge University Press,2013.
    [20]郎红东,杨剑虹.土壤CO2浓度变化及其影响因素的研究.西南农业大学学报(自然科学版),2004(6):731-734,739.LANG H D,YANG J H.Study of CO2 concentration changes in soil profile and its affecting factors.Journal of Southwest Agricultural University(Natural Science),2004(6):731-734,739.(in Chinese)
    [21]王明星,上官行健,沈壬兴,王跃思,谢小立,王卫东.华中稻田甲烷排放的施肥效应及施肥策略.中国农业气象,1995,16(4):1-5.WANG M X,SHANGGUANG X J,SHEN R X,WANG Y S,XIE XL,WANG W D.Fertilizer effect and fertilization strategy for methane emission from central China rice fields.Chinese Journal of Agrometeorology,1995,16(4):1-5.(in Chinese)
    [22]ZHONG Y,WANG X,YANG J,ZHAO X,YE X.Exploring a suitable nitrogen fertilizer rate to reduce greenhouse gas emissions and ensure rice yields in paddy fields.Science of the Total Environment,2016,565:420-426.
    [23]SUN H F,ZHOU S,FU Z S,CHEN G F,ZOU G Y,SONG X F.Atwo-year field measurement of methane and nitrous oxide fluxes from rice paddies under contrasting climate conditions.Scientific Reports,2016,6:2825-2831.
    [24]王琛瑞,黄国宏,梁战备,吴杰,徐国强,岳进,史奕.大气甲烷的源和汇与土壤氧化(吸收)甲烷研究进展.应用生态学报,2002(12):1707-1712.WANG C R,HUANG G H,LIANG Z B,WU J,XU G Q,YUE J,SHIY.Advances in the research on sources and sinks of CH4 and CH4oxidation(uptake)in soil.Chinese Journal of Applied Ecology,2002(12):1707-1712.(in Chinese)
    [25]丁维新,蔡祖聪.温度对甲烷产生和氧化的影响.应用生态学报,2003(4):604-608.DING W X,CAI Z C.Effect of temperature on methane production and oxidation in soil.Chinese Journal of Applied Ecology,2003(4):604-608.(in Chinese)
    [26]ZORNOZA R,ROSSALES R M,ACOATA J A,ROSA J M,ARCENEGUI V,FAZá,PéREZ-PASTOR A.Efficient irrigation management can contribute to reduce soil CO2 emissions in agriculture.Geoderma,2016,263:70-77.
    [27]李新华,朱振林,董红云,杨丽萍,张锡金,郭洪海.氮肥减施对黄淮海地区麦田温室气体排放的影响.土壤与作物,2016,5(4):215-222.LI X H,ZHU Z L,DONG H Y,YANG L P,ZHANG X J,GUO H H.Effects of reduced N fertilizer application on greenhouse gas emissions from wheat fields in Huang-huai-hai area.Soil and Crops,2016,5(4):215-222.(in Chinese)
    [28]ZOU J W,HUANG Y,LU Y Y,ZHENG X H,WANG Y S.Direct emission factor for N2O from rice-winter wheat rotation systems in southeast China.Atmospheric Environment,2005,39(26):4755-4765.
    [29]KONG X W,ERIKSEN J,PETERSEN S O.Evaluation of the nitrification inhibitor 3,4-dimethylpyrazole phosphate(DMPP)for mitigating soil N2O emissions after grassland cultivation.Agriculture Ecosystems and Environment,2018,259:174-183
    [30]MENéNDEZ S,BARRENA I,SETIEN I,GONZáLEZ-MURUA C,ESTAVILLO J M.Efficiency of nitrification inhibitor DMPP to reduce nitrous oxide emissions under different temperature and moisture conditions.Soil Biology and Biochemistry,2012,53:82-89.
    [31]HUéRFANO X,FUERTES-MENDIZáBAL T,DU?ABEITIA M K,GONZáLEZ-MURUA C,ESTAVILLO J M,MENéNDEZ S.Splitting the application of 3,4-dimethylpyrazole phosphate(DMPP):Influence on greenhouse gases emissions and wheat yield and quality under humid Mediterranean conditions.European Journal of Agronomy,2015,64:47-57.
    [32]俞巧钢,殷建祯,马军伟,邹平,林辉,孙万春,符建荣.硝化抑制剂DMPP应用研究进展及其影响因素.农业环境科学学报,2014,33(6):1057-1066.YU Q G,YIN J Z,MA J W,ZOU P,LIN H,SUN W C,FU J R.Effects of nitrification inhibitor DMPP application in agricultural ecosystems and their influencing factors:a review.Journal of Agro-Environment Science,2014,33(6):1057-1066.(in Chinese)
    [33]沈真实,许超,汤海涛,黄凤球,廖育林,孙玉桃,高飞进.DMPP施用的环境效应、影响因素及其机理研究.湖南农业科学,2011(15):71-76.SHEN Z S,XU C,TANG H T,HUANG F Q,LIAO Y L,SUN Y T,GAO F J.Environment effects,influencing factors and mechanism of DMPP application.Hunan Agricultural Sciences,2011(15):71-76.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700