用户名: 密码: 验证码:
黑土团聚体结合碳对不同有机肥施用量的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of aggregate-associated carbon in Mollisols to application rate of organic manure
  • 作者:苑亚茹 ; 邹文秀 ; 郝翔翔 ; 李娜 ; 尤孟阳 ; 韩晓增
  • 英文作者:YUAN Yaru;ZOU Wenxiu;HAO Xiangxiang;LI Na;YOU Mengyang;HAN Xiaozeng;College of Geographical Science, Harbin Normal University;Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences;
  • 关键词:碳饱和 ; 水稳性团聚体 ; 有机肥施用量 ; 长期定位试验 ; 黑土
  • 英文关键词:carbon saturation;;water-stable aggregate;;manure application rate;;long-term experiment;;black soil
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:哈尔滨师范大学地理科学学院;中国科学院东北地理与农业生态研究所黑土区农业生态院重点实验室;
  • 出版日期:2019-02-27 08:30
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学青年基金项目(41601316);; 黑龙江省普通高等学校青年创新人才培养计划项目(UNPYSCT-2018184);; 哈尔滨师范大学科技创新能力计划项目(xkb201309);; 国家重点研发计划项目(2016YFD0300802)
  • 语种:中文;
  • 页:STXB201909020
  • 页数:8
  • CN:09
  • ISSN:11-2031/Q
  • 分类号:220-227
摘要
以连续11年化肥配施不同剂量有机肥的黑土为研究对象,采用团聚体分组与闭蓄态微团聚体分离技术,研究土壤团聚体及其内部组分有机碳对不同有机肥施用量的响应,以期从团聚体尺度揭示黑土有机碳的物理稳定性机制。试验设置4个处理:OM0,仅施化肥;OM1,低量有机肥(7.5 Mg hm~(-2) a~(-1))+化肥;OM2,中量有机肥(15 Mg hm~(-2) a~(-1))+化肥;OM3,高量有机肥(22.5 Mg hm~(-2) a~(-1))+化肥,各处理化肥用量相同。结果显示,与单施化肥相比,有机培肥处理土壤有机碳水平均有显著提升,低量、中量和高量有机肥处理分别提高了7.1%、12.4%和15.7%。有机培肥促进了土壤的团聚化作用,随着有机肥施用量的增加,250—2000μm团聚体含量增加,粉粘粒含量降低,土壤团聚体的稳定性增强,但与中量有机肥相比,高量有机肥输入对土壤团聚化的作用并不明显。有机培肥加速了土壤大团聚体的周转,大团聚体周转速率随着有机肥施用量的增加而加快。有机肥输入并未影响粉黏粒结合有机碳浓度,表明在无有机肥投入的传统管理措施下,黑土粉黏粒已接近或达到碳饱和水平。随着有机肥输入的增加,微团聚体有机碳小幅增加,大团聚体有机碳增加趋势明显,而当有机肥用量最大时,微团聚体有机碳无显著变化,仅大团聚体有机碳仍继续增加,表明高量有机肥投入下微团聚体有机碳库已达到饱和,而更多的新增碳流向大团聚体。对大团聚体内部组分解析发现,高量有机肥处理下大团聚体有机碳的增加主要归因于粗颗粒有机质的增加。这些结果表明,黑土团聚体对有机碳的固持存在由小到大的等级饱和机制,随着有机肥输入的增加,粉粘粒最先达到饱和,然后是微团聚体,而更多的新增碳向周转不断加速的大团聚体富集,固持在活性相对较强的有机碳库—粗颗粒有机质之中。
        This study used fractionation of aggregates and microaggregate-within-macroaggregate techniques to determine the organic carbon(C) content in aggregates and subfractions within aggregates of Mollisols after 11 years of continuous manuring in combination with mineral fertilizers. We aimed to explore the physical protection mechanisms of organic C stabilization of Mollisols at the soil aggregate level. The following four treatments were selected: OM0, only mineral fertilizers with no manure application; OM1, organic manure at the lowest level(7.5 Mg hm~(-2) a~(-1)) plus mineral fertilizers; OM2, organic manure at the medium level(15 Mg hm~(-2) a~(-1)) plus mineral fertilizers; and OM3, organic manure at the highest level(22.5 Mg hm~(-2) a~(-1)) plus mineral fertilizers. Chemical fertilizers were applied at the same rate in each treatment. We found that organic manuring at various rates in combination with mineral fertilizers significantly enhanced the soil organic C(SOC) content. The SOC content in the OM1, OM2, and OM3-treated Mollisols was increased by 7.1%, 12.4%, and 15.7%, respectively, compared to that with OM0 treatment. Organic fertilization greatly facilitated the macroaggregation processes and enhanced the aggregate stability compared with OM0 treatment. The proportion of small macroaggregates(250—2000 μm) increased, whereas the proportion of the silt-plus-clay fraction decreased in response to an increase in the organic manure addition rates. However, there was no significant difference between the OM2 and OM3 treatments in the weight proportion of aggregates or their mean weight diameters. The turnover rate of macroaggregates increased with an increase in the application rates of organic manure. Organic manuring did not affect the C concentration of the silt-plus-clay fraction, which indicated that the silt and clay particles had approached or reached the C saturation level under the traditional management practices without organic manure input. An increase in the organic manure input slightly increased microaggregate C and significantly increased macroaggregate C. When organic manure was supplied at the highest level, microaggregate C did not change significantly, and only macroaggregate C continued to increase, which indicated that the microaggregate C pool had reached saturation and that additional C was sequestered in macroaggregates. Physical separation of the macroggregates into subfractions showed that the increase of organic C in macroaggregates was mainly attributable to the increase of coarse particulate organic matter in macroaggregates(coarse iPOM). These results suggested that C saturation occurred in a hierarchical fashion in a Mollisol. As the C input increased, the silt-plus-clay C pool saturated before the microaggregate C pool and, consequently, additional C input only accumulated in a relatively labile C pool, the coarse iPOM within macroaggregates, which has a relatively faster turnover rate.
引文
[1] 潘根兴,周萍,李恋卿,张旭辉.固碳土壤学的核心科学问题与研究进展.土壤学报,2007,44(2):327- 337.
    [2] 田康,赵永存,徐向华,黄标,孙维侠,史学正,邓文靖.不同施肥下中国旱地土壤有机碳变化特征——基于定位试验数据的Meta分析.生态学报,2014,34(13):3735- 3743.
    [3] Jiang M B,Wang X H,Liusui Y H,Han C,Zhao C Y,Liu H.Variation of soil aggregation and intra-aggregate carbon by long-term fertilization with aggregate formation in a grey desert soil.Catena,2017,149:437- 445.
    [4] Chaudhary S,Dheri G S,Brar B S.Long-term effects of NPK fertilizers and organic manures on carbon stabilization and management index under rice-wheat cropping system.Soil and Tillage Research,2017,166:59- 66.
    [5] Kong A Y Y,Six J,Bryant D C,Denison R F,Van Kessel C.The relationship between carbon input,aggregation,and soil organic carbon stabilization in sustainable cropping systems.Soil Science Society of America Journal,2005,69(4):1078- 1085.
    [6] Yousefi M,Hajabbasi M,Shariatmadari H.Cropping system effects on carbohydrate content and water-stable aggregates in a calcareous soil of Central Iran.Soil and Tillage Research,2008,101(1/2):57- 61.
    [7] Campbell C A,Zentner R P,Bowren K E,Townley-Smith L,Schnitzer M.Effect of crop rotations and fertilization on soil organic matter and some biochemical properties of a thick Black Chernozem.Canadian Journal of Soil Science,1991,71(3):377- 387.
    [8] Gulde S,Chung H,Amelung W,Chang C,Six J.Soil carbon saturation controls labile and stable carbon pool dynamics.Soil Science Society of America Journal,2008,72(3):605- 612.
    [9] Stewart C E,Paustian K,Conant R T,Plante A F,Six J.Soil carbon saturation:Evaluation and corroboration by long-term incubations.Soil Biology and Biochemistry,2008,40(7):1741- 1750.
    [10] 刘满强,胡锋,陈小云.土壤有机碳稳定机制研究进展.生态学报,2007,27(6):2642- 2650.
    [11] Six J,Elliott E T,Paustian K.Soil macroaggregate turnover and microaggregate formation:a mechanism for C sequestration under no-tillage agriculture.Soil Biology and Biochemistry,2000,32(14):2099- 2103.
    [12] Li N,You M Y,Zhang B,Han X Z,Panakoulia S K,Yuan Y R,Liu K,Qiao Y F,Zou W X,Nikolaidis N P,Banwart S A.Modeling soil aggregation at the early pedogenesis stage from the parent material of a Mollisol under different agricultural practices.Advances in Agronomy,2017,142:181- 214.
    [13] Hassink J,Whitmore A P.A model of the physical protection of organic matter in soils.Soil Science Society of America Journal,1997,61(1):131- 139.
    [14] Chung H,Grove J H,Six J.Indications for soil carbon saturation in a temperate agroecosystem.Soil Science Society of America Journal,2008,72(4):1132- 1139.
    [15] Bandyopadhyay P K,Saha S,Mani P K,Mandal B.Effect of organic inputs on aggregate associated organic carbon concentration under long-term rice-wheat cropping system.Geoderma,2010,154(3/4):379- 386.
    [16] Zotarelli L,Alves B J R,Urquiaga S,Boddey R M,Six J.Impact of tillage and crop rotation on light fraction and intra-aggregate soil organic matter in two Oxisols.Soil and Tillage Research,2007,95(1/2):196- 206.
    [17] 黄耀,孙文娟.近20年来中国大陆农田表土有机碳含量的变化趋势.科学通报,2006,51(7):750- 763.
    [18] Li H B,Han X Z,Wang F,Qiao Y F,Xing B S.Impact of soil management on organic carbon content and aggregate stability.Communications in Soil Science and Plant Analysis,2007,38(13/14):1673- 1690.
    [19] 苑亚茹,李禄军,李娜,尤孟阳,韩晓增.长期施肥对东北黑土不同活性有机碳库的影响.生态学杂志,2016,35(6):1435- 1439.
    [20] Yan Y,Tian J,Fan M S,Zhang F S,Li X L,Christie P,Chen H Q,Lee J,Kuzyakov Y,Six J.Soil organic carbon and total nitrogen in intensively managed arable soils.Agriculture,Ecosystems & Environment,2012,150:102- 110.
    [21] Ding X L,Han X Z,Liang Y,Qiao Y F,Li L J,Li N.Changes in soil organic carbon pools after 10 years of continuous manuring combined with chemical fertilizer in a Mollisol in China.Soil and Tillage Research,2012,122:36- 41.
    [22] Liu X B,Han X Z,Song C Y,Herbert S J,Xing B S.Soil organic carbon dynamics in black soils of China under different agricultural management systems.Communications in Soil Science and Plant Analysis,2003,34(7/8):973- 984.
    [23] 郑庆福,刘艇,赵兰坡,冯君,王鸿斌,李春林.东北黑土耕层土壤黏粒矿物组成的区域差异及其演化.土壤学报,2010,47(4):734- 746.
    [24] Sodhi G P S,Beri V,Benbi D K.Soil aggregation and distribution of carbon and nitrogen in different fractions under long-term application of compost in rice-wheat system.Soil and Tillage Research,2009,103(2):412- 418.
    [25] 刘恩科,赵秉强,梅旭荣,Hwat B S,李秀英,李娟.不同施肥处理对土壤水稳定性团聚体及有机碳分布的影响.生态学报,2010,30(4):1035- 1041.
    [26] 苏慧清,韩晓日,杨劲峰,罗培宇,戴健,杨明超,何蕊.长期施肥棕壤团聚体分布及其碳氮含量变化.植物营养与肥料学报,2017,23(4):924- 932.
    [27] Leon M C C,Stone A,Dick R P.Organic soil amendments:Impacts on snap bean common root rot (Aphanomyes euteiches) and soil quality.Applied Soil Ecology,2006,31(3):199- 210.
    [28] Xie H T,Li J W,Zhang B,Wang L F,Wang J K,He H B,Zhang X D.Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates.Scientific Reports,2015,5:14687.
    [29] 刘中良,宇万太,周桦,马强.不同有机厩肥输入量对土壤团聚体有机碳组分的影响.土壤学报,2011,48(6):1149- 1157.
    [30] Kool D M,Chung H,Tate K R,Ross D J,Newton P C D,Six J.Hierarchical saturation of soil carbon pools near a natural CO2 spring.Global Change Biology,2007,13(6):1282- 1293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700