用户名: 密码: 验证码:
含三维深埋裂纹脆性岩石水力压裂数值模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Hydraulic Fracturing of Brittle Rock with Three dimensional Deep Buried Cracks
  • 作者:陈礼婧 ; 张敏
  • 英文作者:CHEN Lijing;ZHANG Min;Guangxi Institute of Technical,Civil Engineering ( Construction Material) College;Institute of Civil Engineering,Jiangxi Science and Technology Normal University;
  • 关键词:脆性岩石 ; 三维深埋裂纹 ; 水力压裂 ; 数值模拟 ; Franc3D
  • 英文关键词:brittle rock;;3D deep buried crack;;hydraulic fracturing;;numerical simulation;;Franc3D
  • 中文刊名:SLFD
  • 英文刊名:Water Power
  • 机构:广西理工职业技术学院土木工程(建筑材料)学院;江西科技师范大学建筑工程学院;
  • 出版日期:2019-03-26 09:00
  • 出版单位:水力发电
  • 年:2019
  • 期:v.45;No.541
  • 基金:国家自然科学基金资助项目(51368007)
  • 语种:中文;
  • 页:SLFD201905009
  • 页数:5
  • CN:05
  • ISSN:11-1845/TV
  • 分类号:38-42
摘要
为研究三维深埋裂纹水力压裂裂纹扩展规律,利用Franc3D软件模拟了裂纹扩展过程。结果表明,水力压裂裂纹扩展因子越大,裂纹扩展形态由原来的翼形包裹状裂纹扩展逐渐转变为自相似扩展;裂纹长轴端点的裂纹扩展速率要小于裂纹短轴端点;裂纹Ⅰ型、Ⅲ型应力强度因子在裂纹长轴端点达到最小,在短轴端点达到最大,而Ⅱ型应力强度因子则相反;水力压裂裂纹扩展因子越大,裂纹的3个应力强度因子的绝对值也越大。
        In order to study the crack propagation law of hydraulic fracturing with three dimensional deep buried cracks,the crack propagation process is simulated by Franc3 D software. The results show that,( a) the larger the crack growth factor D is,the shape of crack propagation is gradually changed from original airfoil wrapped crack growth to self-similar growth;( b) the crack growth rate at the end of long axis is smaller than that at the end of short axis;( c) the stress intensity factor of Mode I and Mode III is smallest at the end of long axis and maximum at the end of short axis,but the stress intensity factor of Mode II is opposite; and( d) the larger the crack growth factor D is,the greater the absolute value of three stress intensity factors are.
引文
[1]冯彦军,康红普.受压脆性岩石Ⅰ-Ⅱ型复合裂纹水力压裂研究[J].煤炭学报,2013,38(2):226-232.
    [2]GRIFFITH A A.The phenomena of rupture and flow in solids[J].Philosophical Transactions of the Royal Society of London,1921,221(2):163-198.
    [3]GERMANOVICH L N,SALGANIK R L,DYSKIN A V,et al.Mechanisms of brittle fracture of rock with pre-existing cracks in compression[J].Pure and Applied Geophysics,1994,143(1-3):117-149.
    [4]HOEK E,BIENIAWSKI Z T.Brittle fracture propagation in rock under compression[J].International Journal of Fracture Mechanics,1984,26(4):276-294.
    [5]于庆磊,唐春安,杨天鸿,等.平台中心角对岩石抗拉强度测定影响的数值分析[J].岩土力学,2008,29(12):3251-3255.
    [6]滕春凯,尹祥础,李世愚,等.非穿透裂纹平板试件三维破裂的试验研究[J].地球物理学报,1987,30(4):43-50.
    [7]尹祥础,李世愚,李红,等.闭合裂纹面相互作用的试验研究[J].地球物理学报,1988,31(3):306-314.
    [8]冯彦军,康红普.水力压裂起裂与扩展分析[J].岩石力学与工程学报,2013,32(Z2):3169-3179.
    [9]侯冰,陈勉,李志猛,等.页岩储集层水力裂缝网络扩展规模评价方法[J].石油勘探与开发,2014,41(6):763-768.
    [10]刘允芳.水压致裂法三维地应力测量[J].岩石力学与工程学报,1991,10(3):246-246.
    [11]LEGARTH B,HUENGES E,ZIMMERMANN G.Hydraulic fracturing in a sedimentary geothermal reservoir:Results and implications[J].International Journal of Rock Mechanics and Mining Sciences,2005,42(7):1028-1041.
    [12]WEEREN H O.Disposal of radioactive wastes by hydraulic fracturing Part III.Design of ORNL's shale-fracturing plant[J].Nuclear Engineering&Design,1966,4(1):108-117.
    [13]KAYUPOV M A.Hydraulic pressure induced crack orientations in strained rock specimens[J].International Journal of Rock Mechanics and Mining Sciences,1998,35(4):434-435.
    [14]徐世烺,王建敏.水压作用下大坝混凝土裂缝扩展与双K断裂参数[J].土木工程学报,2009,42(2):119-125.
    [15]孙欣,朱哲明,谢凌志,等.基于SENDB试样的砂岩复合脆性断裂行为研究[J].岩石力学与工程学报,2017,36(12):2884-2894.
    [16]付金伟,朱维申,张新中,等.内水压下含中空裂隙新型材料的压裂试验及数值模拟研究[J].工程科学与技术,2017,49(4):78-85.
    [17]李明田,李术才,张敦福,等.类岩石材料表面裂纹复合型断裂准则探讨[J].岩石力学与工程学报,2011,30(S1):3326-3333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700