用户名: 密码: 验证码:
不同产地、不同部位的丹参与南丹参的红外光谱研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Identification of Salvia miltiorrhiza Bge from Different Origin,Different Parts and Salvia bowleyana Dunn by Fourier Transform Infrared Spectroscopy
  • 作者:王元媛 ; 李欢欢 ; 刘梅 ; 陈龙梗 ; 于凡 ; 陈卫东 ; 程旺兴 ; 王国凯
  • 英文作者:Wang Yuanyuan;Li Huanhuan;Liu Mei;Chen Longgeng;Yu Fan;Chen Weidong;Cheng Wangxing;Wang Guokai;School of Pharmacy and Anhui Engineering Technology Research Center of Modern Chinese Medicine of Anhui University of Chinese Medicine;
  • 关键词:傅里叶红外光谱法 ; 二阶导数光谱 ; 聚类分析 ; 丹参 ; 鉴别
  • 英文关键词:Fourier transform infrared spectroscopy;;second derivative infrared spectroscopy;;clustering analysis;;Salvia miltiorrhiza Bge;;identify
  • 中文刊名:HXSS
  • 英文刊名:Chemical World
  • 机构:安徽中医药大学药学院现代中药安徽省工程技术研究中心;
  • 出版日期:2019-03-12
  • 出版单位:化学世界
  • 年:2019
  • 期:v.60
  • 基金:安徽省高等学校自然科学基金(No.KJ2018A0300);; 安徽省重点研究与开发计划(No.1704a0802145)资助项目
  • 语种:中文;
  • 页:HXSS201903003
  • 页数:7
  • CN:03
  • ISSN:31-1274/TQ
  • 分类号:16-22
摘要
以丹参为研究对象,采用傅里叶红外光谱技术结合二阶导数红外光谱对不同产地、不同部位的丹参药材进行区分。结果表明,丹参的红外光谱图中主要吸收峰在3 271、2 929、1 607、1 510、1 397、1 260、1 143、1 026、872cm~(-1)附近,不同产地丹参的吸收峰基本相似,但吸收峰的位置及强度存在一定差异;同一产地丹参的不同部位红外光谱及其特征吸收峰有差异,在1 800~800cm~(-1)范围,须根的吸收峰强度>根头部>主根,推测须根中丹参酮类、丹酚酸类及糖类含量较根头部和主根中高。同时研究了丹参与其伪品南丹参,在1 607与1 026cm~(-1)附近,丹参吸收峰强度均明显高于南丹参,说明丹参中丹酚酸类和糖类的含量较南丹参高。对不同产地丹参进行系统聚类分析,结果发现,有效成分的分布与丹参的生态和产地呈一定的相关性,样品聚为两大类。红外光谱结合聚类分析法在丹参的鉴别中,不仅可以提供丹参主要化学成分的相关信息,还可以对不同产地的丹参进行分类鉴别。
        Fourier transform infrared spectroscopy(FT-IR)and second derivative infrared spectroscopy were used to study Salvia miltiorrhiza Bge.The results showed that the main absorption peaks of Salvia miltiorrhiza Bge are located at 3 271,2 929,1 607,1 510,1 397,1 260,1 143,1 026 and 872 cm~(-1).FT-IR spectra of Salvia miltiorrhiza Bge from different origins are similar,but the intensity and position of the absorption peaks are different.There are differences in infrared spectra and characteristic absorption peaks for the different parts of Salvia miltiorrhiza Bge from the same origin.The intensity of the absorption peaks in 1 800~800 cm~(-1) of the fibrous root are higher than that of the root head and main root,which shows that the contents of tanshinones,salvianolic acids and sugars in fibrous root are higher than those in the root head and main root.Comparing the absorption peaks at 1 607 and 1 026 cm~(-1),the contents of salvianolic acids and sugars in Salvia miltiorrhiza Bge are higher than those in Salvia bowleyana Dunn.Systematic cluster analysis of Salvia miltiorrhiza Bge from different origins showed that the distribution of active ingredients is related to the ecology and origin of Salvia miltiorrhiza Bge.The samples were clustered into two categories.Infrared spectroscopy combined with cluster analysis method in the identification of Salvia miltiorrhiza Bge can not only provide the information on the main chemical constituents of Salvia miltiorrhiza Bge,but also identify Salvia miltiorrhiza Bge from different origins.
引文
[1]Chinese Pharmacopoeia Commission.Pharmacopoeia of the People’s Republic of China Volume 1[M].Beijing:China Medical Science and Technology Press,2015:76-77(in Chinese).(国家药典委员会.中华人民共和国药典一部[M].北京:中国医药科技出版社,2015:76-77.)
    [2]Liu J,Dai Z,Wang G L,et al.Progress in Bioactive Constituents and Isolation and Analysis Methods of Salvia Miltiorrhizae Radix et Rhizoma[J].China JExp Tradit Med Formulae,2012,18(11):288-295(in Chinese).(刘静,戴忠,王钢力,等.丹参活性成分及相关分离分析方法研究进展[J].中国实验方剂学杂志,2012,18(11):288-295.)
    [3]Fu J P,Fang J P,Su H X.Chemical Constituents about Fat-Soluble of Radix Salvia Miltiorrhiza[J].JYunnan Univ(Nat Sci Ed),2017,39(1):115-119(in Chinese).(伏继萍,方健平,苏海霞.丹参脂溶性成分的化学研究[J].云南大学学报(自然科学版),2017,39(1):115-119.)
    [4]Feng C X.Research General Ideaon Pharmaceutical Action and Chemical Constitution of Salvia Miltiorrhiza[J].China J Ethnomed Ethnopharmacy,2012,21(2):25-26(in Chinese).(丰成相.丹参的化学成分及药理作用概况[J].中国民族民间医药,2012,21(2):25-26.)
    [5]Li W X.The Pharmacological Action and Clinical Application of Salvia Miltiorrhiza[J].J North Pharm,2013,10(3):34-35(in Chinese).(李卫祥.丹参的药理作用与临床应用[J].北方药学,2013,10(3):34-35.)
    [6]Sun R S,Jin Z X,Zhang Z P,et al.Analysis and Identification of Geranium by Two-dimensional Correlation Infrared Spectroscopy[J].Spectrosc Spectral Anal,2013,33(1):81-84(in Chinese).(孙仁爽,金哲雄,张哲鹏,等.老鹳草中药材红外光谱的分析与鉴定[J].光谱学与光谱分析,2013,33(1):81-84.)
    [7]Lou Y J,Cai H,Liu X,et al.Quick Identification of Sun-Dried and Sulfur-fumigated Angelicae sinensis Radix by Fourier Transform Infrared Spectroscopy[J].China J Chin Mater Med,2012,37(8):1 127-1 132(in Chinese).(娄雅静,蔡皓,刘晓,等.傅里叶变换红外光谱快速鉴别当归与硫磺熏蒸当归的研究[J].中国中药杂志,2012,37(8):1 127-1 132.)
    [8]Zhang X J,Yao J.Application of Fourier Transform Attenuated Total Reflection Infrared Spectroscopy in Analysis of Rubber Products[J].Polym Mater Sci Eng,2013,29(7):127-130(in Chinese).(张小俊,姚杰.红外衰减全反射法(ATR)在橡胶产品分析中的应用[J].高分子材料科学与工程,2013,29(7):127-130.)
    [9]Li M,Liu J,Lyu X N,et al.ATR-FT IR Technique in Identification of Adulteration in Imported Draconis[J].World Chin Med,2016,11(10):2 123-2 125(in Chinese).(李梦,刘杰,吕晓娜,等.ATR-FTIR技术在进口血竭掺伪鉴别中的应用[J].世界中医药,2016,11(10):2 123-2 125.)
    [10]Ke J X,Li S S,Sheng G H,et al.Infrared Fingerprint Analysis of Zanthoxylum Based on Sequential Dual-indexes and Cluster Analysis Method[J].Food Mach,2017,33(3):55-61(in Chinese).(课净璇,黎杉珊,申光辉,等.基于双指标分析法和聚类分析法的花椒红外指纹图谱研究[J].食品与机械,2017,33(3):55-61.)
    [11]Li Z Y,Wang C L,Sun S Q,et al.Analysis of Chemical Componentsin Aconitum kusnezoffii Leaves and Their Extracts by Infrared Spectroscopy[J].China J Chin Mater Med,2011,36(23):3 281-3 285(in Chinese).(李志勇,王朝鲁,孙素琴,等.蒙药草乌叶及其提取物化学成分的红外光谱分析[J].中国中药杂志,2011,36(23):3 281-3 285.)
    [12]Shao Y,Wu Q N,Gu W,et al.Multi-level Identification and Analysis about Infrared Spectroscopy of Lophatheri Herba[J].China J Chin Mater Med,2014,39(9):1 644-1 649(in Chinese).(邵莹,吴启南,谷巍,等.淡竹叶红外光谱的多级鉴定与分析[J].中国中药杂志,2014,39(9):1 644-1 649.)
    [13]Ma F,Zhang F,Tang J,et al.Analysis and Identification of Poria cocos Peels Harvested form Different Producing Areas by FT IR and 2D-IR Correlation Spectroscopy[J].Spectrosc Spectral Anal,2014,34(2):376-380(in Chinese).(马芳,张方,汤进,等.不同产地茯苓皮药材红外光谱的识别[J].光谱学与光谱分析,2014,34(2):376-380.)
    [14]Yan Q,Wang K L,Sha Y N.Study of the Infrared Spectra of Dian Danshen and Danshen by Fourier Transform Infrared Spectroscopy[J].J Light Scattering,2011,23(4):396-401(in Chinese).(颜茜,王昆林,沙育年.滇丹参与丹参的傅里叶变换红外光谱对比研究[J].光散射学报,2011,23(4):396-401.)
    [15]Kong D X,Tang H,Wang M L,et al.Comparison Research on FT IR Fingerprint of Salvia priontis Based on Fourier Transform Infrared Spectroscopy Combined with Multistatistical Analysis[J].Guihaia,2016,36(8):937-942(in Chinese).(孔德鑫,唐辉,王满莲,等.红外光谱结合多元统计方法的不同产地红根草红外指纹图谱比较研究[J].广西植物,2016,36(8):937-942.)
    [16]Wang P,Guo Q M,Zhao Q T,et al.Study on Identification of Different Parts of Salvia miltiorrhiza by Multi-steps Infrared Macro-fingerprint Methed[J].Chin J Exp Tradit Med Formulae,2011,17(9):113-117(in Chinese).(王鹏,郭庆梅,赵启韬,等.白花丹参不同部位的红外光谱三级鉴定[J].中国实验方剂学杂志,2011,17(9):113-117.)
    [17]Huang D L,Chen X K,Xu Y Q,et al.Study on Panax Notoginseng and Its Processed Products by FT IR Spectroscopy[J].Spectrosc Spectral Anal,2014,34(7):1 849-1 852(in Chinese).(黄冬兰,陈小康,徐永群,等.三七炮制前后的红外光谱分析研究[J].光谱学与光谱分析,2014,34(7):1 849-1 852.)
    [18]Li C,Yang S C,Guo Q S,et al.FT IR Fingerprint Spectrograms of Traditional Chinese Medicine Marsdenia Tenacissima[J].China J Chin Mater Med,2014,39(17):3 311-3 315(in Chinese).(李超,杨生超,郭巧生,等.中药通关藤红外指纹图谱研究[J].中国中药杂志,2014,39(17):3 311-3 315.)
    [19]Sun R S,Jin Z X,Zhang Z P,et al.Discrimination of Eleven Genera of Chinese Herbs in Geraniaceae by FT IR Spectroscopy and Clustering Analysis[J].Spectrosc Spectral Anal,2013,33(2):371-375(in Chinese).(孙仁爽,金哲雄,张哲鹏,等.牻牛儿苗科11种中药材红外光谱鉴定及聚类分析[J].光谱学与光谱分析,2013,33(2):371-375.)
    [20]Liu H P,Wang W Y,Sun D D,et al.Identification of Radix Oryzae Glutinosae Based on Infrared Spectroscopy[J].Chin J Pharm Anal,2016,36(3):505-512(in Chinese).(刘海萍,汪维云,孙冬冬,等.糯稻根药材红外光谱的鉴定与分析[J].药物分析杂志,2016,36(3):505-512.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700