用户名: 密码: 验证码:
太湖西岸典型区域沉积物的硫铁分布特征及环境意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Iron-sulfur distribution and its environmental significance in three typical areas of western Lake Taihu
  • 作者:吴松峻 ; 汪旋 ; 季秋忆 ; 王明玥 ; 赵艳萍 ; 王国祥
  • 英文作者:WU Songjun;WANG Xuan;JI Qiuyi;WANG Mingyue;ZHAO Yanping;WANG Guoxiang;School of Environment,Nanjing Normal University;Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,Jiangsu Key Laboratory of Environmental Change and Ecological Construction,Jiangsu Engineering Lab of Water and Soil Eco-remediation;Department of Civil and Environmental Engineering,Northeastern University;
  • 关键词:硫还原 ; 化学铁还原 ; 三价铁氧化物 ; 聚藻区 ; 清淤区 ; 开阔水域 ; 太湖
  • 英文关键词:Sulfate reduction;;chemical iron reduction;;Fe(Ⅲ) oxides;;algae accumulated sediment;;dredged sediment;;sediment away from lake shore;;Lake Taihu
  • 中文刊名:FLKX
  • 英文刊名:Journal of Lake Sciences
  • 机构:南京师范大学环境学院;江苏省地理信息资源开发与利用协同创新中心江苏省环境演变与生态建设重点实验室江苏省水土环境生态修复工程实验室;美国东北大学土木与环境学院;
  • 出版日期:2019-07-06
  • 出版单位:湖泊科学
  • 年:2019
  • 期:v.31
  • 基金:国家水体污染控制与治理科技重大专项(2017ZX07203-003);; 国家自然科学基金项目(41573061)联合资助
  • 语种:中文;
  • 页:FLKX201904006
  • 页数:11
  • CN:04
  • ISSN:32-1331/P
  • 分类号:62-72
摘要
以太湖西岸聚藻区、清淤区和开阔水域3种典型区域为对象,对沉积物中硫铁的分布进行研究.结果显示,各区域沉积物中铁还原均比硫还原活跃,硫铁氧化还原菌的分布表明硫铁循环主要集中于0~15 cm表层沉积物.开阔水域未发现明显硫离子(dS~(2-))释放与酸性可挥发性硫化物(AVS)沉积,硫还原较弱;二价铁离子(d Fe~(2+))平均浓度为dS~(2-)的5.2倍,说明沉积物仍以铁还原为主导.清淤区硫酸盐还原菌(SRB)相对丰度与dS~(2-)含量均为所有区域中最低,且未见明显dFe~(2+)释放,表明清淤抑制了硫铁还原的进行.聚藻区表层沉积物SRB相对丰度达到2.7%,且出现d S2-和AVS的显著升高,说明沉积物中发生着强烈的微生物硫还原.在表层沉积物也出现了明显的d Fe~(2+)释放,反映出强烈的铁还原,但沉积物中铁还原菌(FeRB)的平均丰度仅为0.6%,这一数值与其他区域相似,显然无法解释聚藻区与其他区域巨大的dFe~(2+)差异,因此微生物铁还原并不是铁还原的主要途径.考虑到硫铁化合物的沉积与Fe(Ⅲ)氧化物的消耗一致,沉积物中的铁还原是由ΣS2-诱导的化学铁还原主导. d Fe~(2+)平均浓度为 S~(2-)的4.8倍,监测培养沉积物的dS~(2-)、dFe~(2+)变化所得的铁还原速率是硫还原速率的7.4倍,说明铁还原仍比硫还原活跃.但由于AVS的沉积对ΣS2-的消耗,真实硫还原速率应高于测量值.
        Geochemical characteristic of sulfur and iron was investigated in three types of sediments including algae accumulated sediment,dredged sediment and sediment away from lake shore. It was found that iron reduction dominated in all sediments rather than sulfate reduction. Both reduction concentrated in 0-15 cm surface sediments according to the distribution of microorganisms of iron and sulfur species. Accumulation of dS~(2-)and acid volatile sulfide( AVS) was not observed in sediment away from lake shore,indicating that sulfate reduction is minor. Iron reduction was more active than sulfate reduction as the mean concentration of d Fe~(2+)was 5.2 folds of d S2-. Sulfate reducing bacteria( SRB) abundance and d S2-content in dredged sediments were the lowest and dFe~(2+)release was not found,suggesting the depressed iron and sulfate reduction by dredging. SRB abundance in algae accumulated sediment reached to 2.7% and intensive d S2-release and AVS deposition were found,indicating the strong sulfate reduction. Active iron reduction was also found with high d Fe~(2+)concentration in algae accumulated sediment. However,the mean abundance of iron reducing bacteria( FeRB) was only 0.6%,which was similar to other sediments and was obviously not able to explain the huge difference of dFe~(2+)concentrations. Thus,microbial iron reduction was not the main pathway of iron reduction. Considering the corresponding dissolution of Fe( Ⅲ) oxides and deposition of iron sulfides,sulfide-mediated chemical iron reduction was the dominating pathway. The mean concentration of d Fe~(2+)was 4.8 folds of dS~(2-),and iron reduction rate was 7.4 folds of sulfate reduction rate by monitoring d S2-and d Fe~(2+)variations,suggesting iron reduction was more active than sulfate reduction. However,as AVS generation could consume dS~(2-),the real rate of sulfate reduction was higher than the measured rate. Transition of iron and sulfur cycling would cause various negative effects and even extreme cases including"dead zones"in marine and"black bloom"in freshwater lakes. Although similar phenomenon was only observed in algae accumulated sediment,concern should still be raised.
引文
[1] Kappler A. Geomicrobiological cycling of iron. Reviews in Mineralogy&Geochemistry,2005,59(1):85-108.
    [2] Thamdrup B. Bacterial manganese and iron reduction in aquatic sediments. Advances in Microbial Ecology,2000,16(1):41-84.
    [3] Flynn TM,O'Loughlin EJ,Mishra B et al. Sulfur-mediated electron shuttling during bacterial iron reduction. Science,2014,344(6187):1039-1042.
    [4] Ding SM,Wang Y,Wang D et al. In situ,high-resolution evidence for iron-coupled mobilization of phosphorus in sediments. Scientific Reports,2016,6:24341.
    [5] Huang QH,Wang ZJ,Wang CX et al. Phosphorus release in response to p H variation in the lake sedimentswith different ratios of iron-bound P to calcium-bound P. Chemical Speciation&Bioavailability,2005,17(2):55-61.
    [6] Paerl HW,Paul VJ. Climate change:links to global expansion of harmful cyanobacteria. Water Research,2012,46(5):1349-1363.
    [7] Zak D,Rossoll T,Exner H et al. Mitigation of sulfate pollution by rewetting of fens—A conflict with restoring their phosphorus sink function? Wetlands,2009,29(4):1093-1103.
    [8] Yu T,Zhang Y,Wu FC et al. Six-decade change in water chemistry of large freshwater Lake Taihu,China. Environmental Science&Technology,2013,47(16):9093-9101.
    [9] Luther GW,Church TM,Scudlark JR et al. Inorganic and organic sulfur cycling in salt-marsh pore waters. Science,1986,232(4751):746-749.
    [10] Hansel CM,Lentini CJ,Tang Y et al. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments.Isme Journal,2015,9(11):2400-2412.
    [11] Koretsky CM,Moore CM,Lowe KL et al. Seasonal oscillation of microbial iron and sulfate reduction in saltmarsh sediments(Sapelo Island,GA,USA). Biogeochemistry,2003,64(2):179-203.
    [12] Man JK,Boyanov MI,Antonopoulos DA et al. Effects of dissimilatory sulfate reduction on FeⅢ(hydr)oxide reduction and microbial community development. Geochimica et Cosmochimica Acta,2014,129(129):177-190.
    [13] Rozan TF,Taillefert M,Trouwborst RE et al. Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay:Implications for sediment nutrient release and benthic macroalgal blooms. Limnology and Oceanography,2002,47(5):1346-1354.
    [14] Anderson DM,Burkholder JM,Cochlan WP et al. Harmful algal blooms and eutrophication:Examining linkages from selected coastal regions of the United States. Harmful Algae,2009,8(1):39-53.
    [15] Hyacinthe C,Van Cappellen P. An authigenic iron phosphate phase in estuarine sediments:composition,formation and chemical reactivity. Marine Chemistry,2004,91(1):227-251.
    [16] Diaz RJ,Rosenberg R. Spreading dead zones and consequences for marine ecosystems. Science,2008,321(5891):926-929.
    [17] Chen C,Zhong JC,Yu JH et al. Optimum dredging time for inhibition and prevention of algae-induced black blooms in Lake Taihu,China. Environ Sci Pollut Res Int,2016,23(14):14636-14645.
    [18] Duval B,Ludlam SD. The black water chemocline of meromictic lower Mystic Lake,Massachusetts,U.S.A. International Review of Hydrobiology,2015,86(2):165-181.
    [19] Zhang XJ,Chen C,Ding JQ et al. The 2007 water crisis in Wuxi,China:analysis of the origin. Journal of Hazardous Materials,2010,182(1):130-135.
    [20] Liu C,Shen QS,Zhou QL et al. Precontrol of algae-induced black blooms through sediment dredging at appropriate depth in a typical eutrophic shallow lake. Ecological Engineering,2015,77:139-145.
    [21] Chen M,Li XH,He YH et al. Increasing sulfate concentrations result in higher sulfide production and phosphorous mobilization in a shallow eutrophic freshwater lake. Water Research,2016,96:94-104.
    [22] Zhao YP,Zhang ZQ,Wang GX et al. High sulfide production induced by algae decomposition and its potential stimulation to phosphorus mobility in sediment. Science of the Total Environment,2019,650:163-172.
    [23] Shen QS,Zhou QL,Shang JG et al. Beyond hypoxia:occurrence and characteristics of black blooms due to the decomposition of the submerged plant Potamogeton crispus in a shallow lake. Journal of Environmental Sciences-China,2014,26(2):281-288.
    [24] Yin HB,Fan CX,Li B et al. Geochemical characteristics of iron and sulfur in sediments of northern Lake Taihu. Geocheimica,2008,37(6):595-601.[尹洪斌,范成新,李宝等.太湖北部沉积物中铁硫的地球化学特征研究.地球化学,2008,37(6):595-601.]
    [25] Tabatabai MA. A rapid method for determination of sulfate in water samples. Environmental Letters,1974,7(3):237-243.
    [26] Cline JD. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnology and Oceanography,1969,14(3):454-458.
    [27] Lovley DR,Phillips EJP. Novel mode of microbial energy-metabolism-organic-carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology,1988,54(6):1472-1480.
    [28] Rozan TF,Taillefert M,Trouwborst RE et al. Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay:Implications for sediment nutrient release and benthic macroalgal blooms. Limnology and Oceanography,2002,47(5):1346-1354.
    [29] Hsieh YP,Shieh YN. Analysis of reduced inorganic sulfur by diffusion methods:improved apparatus and evaluation for sulfur isotopic studies. Chemical Geology,1997,137(3):255-261.
    [30] Howard DE,Evans RD. Acid-volatile sulfide(AVS)in a seasonally anoxic mesotrophic lake:Seasonal and spatial changes in sediment AVS. Environmental Toxicology&Chemistry,2010,12(6):1051-1057.
    [31] Thomsen U,Thamdrup B,Stahl DA et al. Pathways of organic carbon oxidation in a deep lacustrine sediment,Lake Michigan. Limnology and Oceanography,2004,49(6):2046-2057.
    [32] Lin QM,Wu YG,Liu HL. Modification of fumigation extraction method for measuring soil microbial biomass carbon. Chinese Journal of Ecology,1999,(2):63-66.[林启美,吴玉光,刘焕龙.熏蒸法测定土壤微生物量碳的改进.生态学杂志,1999,(2):63-66.]
    [33] Gagnon C,Mucci A,milien P. Anomalous accumulation of acid-volatile sulphides(AVS)in a coastal marine sediment,Saguenay Fjord,Canada. Geochimica et Cosmochimica Acta,1995,59(13):2663-2675.
    [34] Bradley RL,Fyles JW. A kinetic parameter describing soil available carbon and its relationship to rate increase in C mineralization. Soil Biology&Biochemistry,1995,27(2):167-172.
    [35] Dolla A,Fournier M,Dermoun Z. Oxygen defense in sulfate-reducing bacteria. Journal of Biotechnology,2006,126(1):87-100.
    [36] Wang JZ,Jiang X,Zheng BH et al. Effects of electron acceptors on soluble reactive phosphorus in the overlying water during algal decomposition. Environmental Science&Pollution Research International,2015,22(24):19507-19517.
    [37] Wilkin RT,Barnes HL. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochimica et Cosmochimica Acta,1996,60(21):4167-4179.
    [38] Gagnon C,Mucci A,Pelletier E. Anomalous accumulation of acid-volatile sulphides(AVS)in a coastal marine sediment,Saguenay Fjord,Canada. Geochimica et Cosmochimica Acta,1995,59(13):2663-2675.
    [39] Roden EE,Urrutia MM. Influence of biogenic Fe(II)on bacterial crystalline Fe(Ⅲ)oxide reduction. Geomicrobiology Journal,2002,19(2):209-251.
    [40] Lovley D. Dissimilatory Fe(Ⅲ)-and Mn(IV)-Reducing Prokaryotes. Prokaryotes,2000,(3):635-658.
    [41] Yin HB,Fan CX,Ding SM et al. Geochemistry of iron,sulfur and related heavy metals in metal-polluted Taihu Lake sediments. Pedosphere,2008,18(5):564-573.
    [42] Friedrich MW,Finster KW. How sulfur beats iron. Science,2014,344(6187):974-975.
    [43] Feng ZY,Fan CX,Huang WY et al. Microorganisms and typical organic matter responsible for lacustrine“black bloom”.Science of the Total Environment,2014,470/471:1-8.
    [44] Nakagawa M,Ueno Y,Hattori S et al. Seasonal change in microbial sulfur cycling in monomictic Lake Fukami-ike,Japan.Limnology and Oceanography,2012,57(4):974-988.
    [45] Sun M,Xiao T,Ning Z et al. Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water. Applied Microbiology&Biotechnology,2015,99(6):2911-2922.
    [46] Rabus R,Hansen TA,Widdel F eds. Dissimilatory sulfate-and sulfur-reducing prokaryotes. New York:Springer,2006:659-768.
    [47] Lohmayer R,Kappler A,Lsekannbehrens T et al. Sulfur species as redox partners and electron shuttles for ferrihydrite reduction by sulfurospirillum deleyianum. Applied&Environmental Microbiology,2014,80(10):3141-3149.
    [48] Moosmann L,Gachter R,Muller B et al. Is phosphorus retention in autochthonous lake sediments controlled by oxygen or phosphorus. Limnology and Oceanography,2006,51(1):763-771.
    [49] Berry WJ,Hansen DJ,Boothman WS et al. Predicting the toxicity of metal-spiked laboratory sediments using acid-volatile sulfide and interstitial water normalizations. Environmental Toxicology&Chemistry,2010,15(12):2067-2079.
    [50] Bebie J,Schoonen MAA,Fuhrmann M et al. Surface charge development on transition metal sulfides:An electrokinetic study. Geochimica et Cosmochimica Acta,1998,62(4):633-642.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700