用户名: 密码: 验证码:
太湖藻型湖区沉积物中生物易降解物质组成及分布规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Composition and distribution of biodegradable compounds in phytoplankton-dominated zone of Lake Taihu
  • 作者:祁闯 ; 方家琪 ; 张利民 ; 雷波 ; 汤响成 ; 王国祥
  • 英文作者:QI Chuang;FANG Jiaqi;ZHANG Limin;LEI Bo;TANG Xiangcheng;WANG Guoxiang;School of Environment,Nanjing Normal University;Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application Jiangsu Key Laboratory of Environmental Change and Ecological Construction,Institute of Water Environmental Eco-remediation;
  • 关键词:太湖 ; 藻积层 ; 生物易降解物质 ; 微电极 ; 营养盐 ; 沉积物
  • 英文关键词:Lake Taihu;;cyanobacterial-derived bioclastic deposit;;biogradable compounds;;microsensor;;nutrient;;sediment
  • 中文刊名:FLKX
  • 英文刊名:Journal of Lake Sciences
  • 机构:南京师范大学环境学院;江苏省地理信息资源开发与利用协同创新中心江苏省环境演变与生态建设重点实验室江苏省水土环境生态修复工程实验室;
  • 出版日期:2019-07-06
  • 出版单位:湖泊科学
  • 年:2019
  • 期:v.31
  • 基金:国家水体污染控制与治理科技重大专项(2017ZX07203-003,2017ZX07202-004);; 国家自然科学基金项目(41703105,41573061);; 江苏省研究生科研创新计划(KYCX17_1065)联合资助
  • 语种:中文;
  • 页:FLKX201904005
  • 页数:9
  • CN:04
  • ISSN:32-1331/P
  • 分类号:53-61
摘要
为研究富营养化湖泊藻型湖区沉积物中生物易降解有机质的组成及其垂向分布特征,选取太湖竺山湾湖滨带和开敞湖区采集沉积物柱状样,利用微电极技术测定沉积物-水界面理化指标的剖面特征,并对沉积物中含水率、烧失量、色素含量、总有机碳、总氮以及生物易降解物质(总蛋白、总糖和总脂)进行测定.结果表明:藻型湖区沉积物-水界面处溶解氧、pH和氧化还原电位在垂向剖面上呈现出随深度增加而下降的趋势,空间上存在明显的异质性,湖滨带沉积物-水界面溶解氧、pH和氧化还原电位显著低于开敞湖区,而沉积物-水界面H_2S浓度在垂向上则表现为随深度先降低而后升高的趋势.此外,藻型湖区沉积物中生物易降解有机质的组成和分布同样存在明显的空间异质性.组成上以脂类(7.7 mg/g)为主,其次是糖类(4.5 mg/g),蛋白质(0.8 mg/g)含量最低;空间上,湖滨带沉积物中生物易降解有机质含量显著高于开敞湖区,表层15 cm以上沉积物含水率和烧失量较高,有机质含量丰富.
        To better understand the distribution and composition of sedimentary bioclastic material in phytoplankton-dominated eutrophic lakes,we combined a spatial survey of surface sediments with sediment core analyses to quantify moisture content,ignition loss,pigments,total organic nitrogen,total nitrogen and biodegradable compounds changes in the littoral zones and off-shore areas.Results show that dissolved oxygen,pH and oxidation-reduction potential presented a clear downward trend with increasing depth,while the H2 S concentrations gradually decreased with increasing depth and then increased in deeper layers until they reached a maximum and remained stable. In the littoral zones,the physicochemical parameters were mostly higher than that in the offshore areas. In addition,the biodegradable compounds showed significant spatial variability. Results show that lipids( 7.7 mg/g),followed by carbohydrates( 4.5 mg/g),was the dominant component of sedimentary bioclastic material. Data shows that the distribution of high moisture content,ignition loss and biodegradable compounds were mainly localization in the surface 15 cm of sediments.
引文
[1] Tao Y,Yu J,Lei G et al. Indirect influence of eutrophication on air-water exchange fluxes,sinking fluxes,and occurrence of polycyclic aromatic hydrocarbons. Water Research,2017,122:512-525.
    [2] Xu FL,Yang C,He W et al. Bias and association of sediment organic matter source apportionment indicators:A case study in a eutrophic Lake Chaohu,China. Science of the Total Environment,2017,581:874-884.
    [3] Matisoff G,Watson SB,Guo J et al. Sediment and nutrient distribution and resuspension in Lake Winnipeg. Science of the Total Environment,2017,575:173-186.
    [4] Tammeorg O,Mls T,Laugaste R et al. Wind-induced sediment resuspension as a potential factor sustaining eutrophication in large and shallow Lake Peipsi. Aquatic Sciences,2013,75(4):559-570.
    [5] Spooner DR,Maher W. Benthic sediment composition and nutrient cycling in an intermittently closed and open lake lagoon. Journal of Marine Systems,2009,75(1):33-45.
    [6] He YZ,Ke F,Feng MH et al. Characteristics and distribution of biodegradable compounds of surface sediments in Lake Chaohu. J Lake Sci,2016,28(1):40-49. DOI:10.18307/2016.0105.[何延召,柯凡,冯慕华等.巢湖表层沉积物中生物易降解物质成分特征与分布规律.湖泊科学,2016,28(1):40-49.]
    [7] Wang YR,Chen XC,Chen BF et al. The release of pollutants in sediment-water interface after algal-debris accumulated in sediments. Acta Scientiae Circumstantiae,2018,38(1):142-153.[王亚蕊,陈向超,陈丙法等.藻屑堆积对沉积物-水界面污染物的释放效应.环境科学学报,2018,38(1):142-153.]
    [8] Brown MR. The amino-acid and sugar composition of 16 species of microalgae used in mariculture. Journal of Experimental Marine Biology&Ecology,1991,145(1):79-99.
    [9] Brown MR,Jeffrey SW,Volkman JK et al. Nutritional properties of microalgae for mariculture. Aquaculture,1997,151(1-4):315-331.
    [10] Brune DE,Lundquist TJ,Benemann JR et al. Microalgal biomass for greenhouse gas reductions:potential for replacement of fossil fuels and animal feeds. Journal of Environmental Engineering,2009,135(11):1136-1144.
    [11] Gatenby CM,Orcutt DM,Kreeger DA et al. Biochemical composition of three algal species proposed as food for captive freshwater mussels. Journal of Applied Phycology,2003,15(1):1-11.
    [12] Joseph MM,Kumar CSR,Kumar TRG et al. Biogeochemistry of surficial sediments in the intertidal systems of a tropical environment. Chemistry&Ecology,2008,24(4):247-258.
    [13] Zhang XJ,Zhang Y,Wang H et al. Emergent drinking water treatment for taste and odor control in Wuxi City water pollution incident. Water&Wastewater Engineering,2007,33(9):7-12.[张晓健,张悦,王欢等.无锡自来水事件的城市供水应急除臭处理技术.给水排水,2007,33(9):7-12.]
    [14] Fan CX. Progress and prospect in formation of black bloom in Lake Taihu:A review. J Lake Sci,2015,27(4):553-566.DOI:10.18307/2015.0401.[范成新.太湖湖泛形成研究进展与展望.湖泊科学,2015,27(4):553-566.]
    [15] Shen QS,Fan CX. Identification of black suspended particles in the algae-induced black bloom water column. J Lake Sci,2015,27(4):591-598. DOI:10.18307/2015.0405.[申秋实,范成新.藻源性湖泛水体显黑颗粒的元素形态分析与鉴定.湖泊科学,2015,27(4):591-598.]
    [16] Shen Q,Fan C,Liu C et al. The limiting factor to the outbreak of lake black bloom:Roles of ferrous iron and sulfide ions.Clean Soil Air Water,2018,46(9):1-7.
    [17] Duan H,Ma R,Loiselle SA et al. Optical characterization of black water blooms in eutrophic waters. Science of the Total Environment,2014,482(3):174-183.
    [18] He Y,Song N,Jiang HL. Effects of dissolved organic matter leaching from macrophyte litter on black water events in shallow lakes. Environmental Science&Pollution Research,2018,25(10):1-12.
    [19] Zhou Y,Jeppesen E,Zhang Y et al. Chromophoric dissolved organic matter of black waters in a highly eutrophic Chinese lake:Freshly produced from algal scums? Journal of Hazardous Materials,2015,299(6):222-230.
    [20] Qi C,Wang GX,Wu XT et al. Deposition characteristics of suspended solids and the response of dissolved nutrients in spring in the western lakeside of Taihu Lake. Environmental Science,2017,38(1):95-103.[祁闯,王国祥,吴馨婷等.太湖湖滨带春季悬浮物沉降特征与水体营养盐响应.环境科学,2017,38(1):95-103.]
    [21] Wu XT,Qi C,Xu XG et al. Simulation of cyanobacteria decay's impacts on nutrients in Water. Acta Scientiae Circumstantiae,2017,37(8):2846-2853.[吴馨婷,祁闯,许晓光等.蓝藻腐解对水中营养盐影响的模拟研究.环境科学学报,2017,37(8):2846-2853.]
    [22] Li J,Zhang Y,Katsev S. Phosphorus recycling in deeply oxygenated sediments in Lake Superior controlled by organic matter mineralization. Limnology and Oceanography,2018,63(3):1-14.
    [23] Meyers PA,Ishiwatari R. Lacustrine organic geochemistry—An overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry,1993,20(7):867-900.
    [24] Liu X,Shi C,Xu X et al. Spatial distributions ofβ-cyclocitral andβ-ionone in the sediment and overlying water of the west shore of Taihu Lake. Science of the Total Environment,2017,579:430-438.
    [25] Department of Ecology and Environment of Jiangsu Province. Bulletin of the 2016 State of the environment in Jiangsu Province,2016.[江苏省环境保护厅. 2016年江苏省环境状况公报,2016.]
    [26] Szymczak-Z'ya M,Kowalewska G. Chloropigments a in the Gulf of Gdańsk(Baltic Sea)as markers of the state of this environment. Marine Pollution Bulletin,2007,55(10):512-528.
    [27] Heiri O,Lotter AF,Lemcke G. Loss on ignition as a method for estimating organic and carbonate content in sediments:reproducibility and comparability of results. Journal of Paleolimnology,2001,25(1):101-110.
    [28] Venturini N,Pita AL,Brugnoli E et al. Benthic trophic status of sediments in a metropolitan area(Rio de la Plata estuary):Linkages with natural and human pressures. Estuarine Coastal&Shelf Science,2012,112(3):139-152.
    [29] Pusceddu A,Dell'Anno A,Fabiano M et al. Quantity and bioavailability of sediment organic matter as signatures of benthic trophic status. Marine Ecology Progress,2009,375(12):41-52.
    [30] Ding S,Chen M,Gong M et al. Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms. Science of the Total Environment,2018,625:872-884.
    [31] Liu GF,Zhong JC,He J et al. Effects of black spots of dead-cyanobacterial mats on Fe-S-P cycling in sediments of Zhushan Bay,Lake Taihu. Environmental Science,2009,30(9):2520-2526.[刘国锋,钟继承,何俊等.太湖竺山湾藻华黑水团区沉积物中Fe、S、P的含量及其形态变化.环境科学,2009,30(9):2520-2526.]
    [32] Holmer M,Storkholm P. Sulphate reduction and sulphur cycling in lake sediments:a review. Freshwater Biology,2001,46(4):431-451.
    [33] Han C,Ding S,Yao L et al. Dynamics of phosphorus-iron-sulfur at the sediment-water interface influenced by algae blooms decomposition. Journal of Hazardous Materials,2015,300:329-337.
    [34] Yu D,Xie P,Zeng C et al. In situ enclosure experiments on the occurrence,development and decline of black bloom and the dynamics of its associated taste and odor compounds. Ecological Engineering,2016,87:246-253.
    [35] Waters MN,Schelske CL,Kenney WF et al. The use of sedimentary algal pigments to infer historic algal communities in Lake Apopka,Florida. Journal of Paleolimnology,2005,33(1):53-71.
    [36] Krishnamurthy RV,Bhattacharya SK,Kusumgar S. Palaeoclimatic changes deduced from13C/12C and C/N ratios of Karewa Lake sediments,India. Nature,1986,323(6084):150-152.
    [37] Huang J,Graham N,Templeton MR et al. A comparison of the role of two blue-green algae in THM and HAA formation.Water Research,2009,43(12):3009-3018.
    [38] Li K,Guan BH,Liu ZW. Experiments on decomposition rate and release forms of nitrogen and phosphorus from the decomposing cyanobacterial detritus. J Lake Sci,2011,23(6):919-925. DOI:10.18307/2011.0614.[李柯,关保华,刘正文.蓝藻碎屑分解速率及氮磷释放形态的实验分析.湖泊科学,2011,23(6):919-925.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700